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SOLUTION OF AN INITIAL-VALUE PROBLEM 

IN LINEAR  TRANSPORT  THEORY:  MONOENERGETIC NEUTRONS 

IN A SLAB WITH INFINITE REFLECTORS* 

By P e r r y  A. Newman  and  Robert  L. Bowden** 
Langley  Research  Center 

SUMMARY 

The  solution of an  initial-value  problem  in  linear  transport  theory is obtained by 
using  the  normal-mode  expansion  technique of Case.  The  problem is that of mono- 
energetic  neutrons  migrating  in a thin  slab  surrounded by infinitely  thick  reflectors  and 
the  scattering is taken  to  be  isotropic.  The  results  obtained  indicate  that  the  reflector 
may  give r i se   to  a branch-cut  integral  term  typical of a semi-  infinite  medium  whereas 
the  central  slab  may  contribute a summation  over  discrete  residue  terms.  Exact 
expressions  are  obtained  for  these  discrete  time  eigenvalues,  and  numerical  results 
showing  the  behavior of real  time  eigenvalues as a function of the  material  properties of 
the  slab  and  reflector  are  presented.  These  eigenvalues  are  finite  in  number  and  may 
disappear  into  the  branch  cut or continuum as the  material  properties  are  varied;  such 
disappearing  eigenvalues  correspond  to  exponentially  time-decaying  modes.  The  two 
largest  eigenvalues  can  be  compared with critical  dimensions of slabs  and  spheres,  and 
the  numerical  values  are shown  to agree with  the  criticality  results of others. In the 
limit of purely  absorbing  reflectors  or a bare  slab,  the  present  solution  has  the  same 
properties as have  been  previously  reported by others who used  the  approach of Lehner 
and Wing. 

INTRODUCTION 

Linearized  transport  equations  are  encountered  in a number of different  areas  such 
as neutron  diffusion,  radiative  transfer,  sound  propagation,  and  plasma  theory,  and  the 
extent  to  which  they  correspond  to  reality  varies  from  problem  to  problem  even  within a 

~~~ ~~ ~ ~~ ~ ~~ ~~ * The  material  presented  herein was a thesis  entitled  "Time Dependent  Mono- 
energetic  Neutron  Transport  in a Finite  Slab  With  Infinite  Reflectors"  submitted  in  partial 
fulfillment of the  requirements  for  the  degree of Doctor of Philosophy  in  Physics,  Virginia 
Polytechnic  Institute,  Blacksburg,  Virginia,  December 1969 by P e r r y  A. Newman. 

**Associate  Professor,  Virginia  Polytechnic  Institute  and State University. 



given area. Since  there are some  problems  where  the  approximations  required  for 
linearization are not  unduly severe  from a physical  point of view, a substantial  effort  to 
develop  methods  for  solving  such  equations  has  been  made.  However,  analytical  solu- 
tions  have  been  obtained  for  only a small  class of highly  idealized  problems  and  few of 
these  solutions  have  been  for  the  time-dependent  situation.  Therefore, it might  be 
expected  that  any new time-dependent  result  should  provide  additional  insight  into  the 
general  character of such  solutions.  In  any case, analytical  solutions  provide a set of 
check cases for  comparison of the  approximate  methods (see, for  example, refs. 1 and 2) 
which are used  in  practical  applications.  The  present  idealized  neutron  transport  prob- 
lem,  being  somewhat  more  complicated  than  those  considered  previously,  gives  such new 
results.  In  addition,  the  procedure  used  to  obtain  the  present  solution is generally  appli- 
cable  to  other  time-dependent  problems  in  linear  transport  theory  and is therefore of 
interest  in its own right. 

The  basic  assumptions  customarily  made  in  neutron  transport  theory (see, for 
example, refs. 1, 2, and 3) have  been  summarized by Wiper  (ref. 4). Since  the  conven- 
tional  derivations of the  governing  transport  equation  are  based  mainly  on  plausibility 
arguments,  Osborn  and  Yip (ref. 5) have  reexamined  the  situation  starting  from a micro- 
scopic  point of view  using  quantum  mechanics.  They  conclude  that  they a r e  only par- 
tially  successful  in  justifying  the  conventional  neutron  transport  equation  because a num- 
ber  of required  approximations are merely  stated  and not  analyzed o r  evaluated;  however, 
their  approach  "brings  many  aspects of the  neutron  problem  into  contact with other  micro- 
scopic  transport  theories."  For  the  present  problem,  the  additional  restrictions  to  mono- 
energetic  (called  one-group  or  constant  cross-section  approximation  in ref. 1) neutrons, 
plane  geometry,  and  isotropic  scattering  in  the  laboratory  system  are  made.  (See  refs. 1 
to 4.) It is pointed  out  in  references 1 and 2 that  even  though  the  monoenergetic  approxi- 
mation is rather  severe  from a physical  point of view  and is made  primarily  in  order  to 
obtain  analytical  solutions  which  usually  cannot  be  obtained  for  the  general  case, it forms 
the  basis of the  more  physical  multigroup  approximations.  Under  these  restrictions, 
the  solution of the  initial-value  monoenergetic  neutron-transport  equation  for a one- 
dimensional  slab of finite  thickness  surrounded  by  infinitely  thick  reflectors of a different 
material is obtained  in  this  report. 

* 

One  mathematically  rigorous  approach  which  has  been  used  to  treat  such  problems 
is a spectral  analysis.  Lehner  and Wing (refs. 6 and 7) used  this  approach  to  solve  the 
initial  value,  monoenergetic  neutron-transport  problem  for a bare  slab  where  the 

*Osborn  and Yip (ref. 5) give  four  reasons  for  using a quantum  mechanical treat- 
ment: (1) a formalism  for  describing  the  creation  and  destruction of particles  exists, 
(2) the  neutron-nuclear  interactions are truly  quantum  phenomena, (3) the  interpretation 
of an  observable  density  in  phase  space,  and (4) other  peculiarly  quantum  effects  such as 
spin  and  associated statistics. 
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scattering is isotropic.  Lehner  (ref. 8) considered a slab of finite  thickness  surrounded 
by a purely  absorbing  medium  which  had  the  same  total  macroscopic  cross  section as the 
slab.  Very  recently Hintz  (ref. 9) has  generalized  this  problem by allowing  the  purely 
absorbing  medium  to  have  any  cross  section. Mika (ref. 10) has  studied  the  initial-value 
problem  for  monoenergetic  neutrons  in a nonuniform slab surrounded by a vacuum  but  did 
not obtain  results as complete as those of Lehner  and Wing (refs.  6  and 7). In particular, 
theorems  concerning  the  reality  and  number of discrete  time  eigenvalues  were not 
established. 

Another  approach which has  been  used  to  solve a few  time-dependent,  monoenergetic 
neutron-transport  problems  in  plane  geometry is the  normal-mode  expansion  technique of 
Case.  (See  refs. 2 and 11.) This  method was used by  Bowden and  Williams  (refs. 12  
and 13) to  analyze  the  problem which had  been  treated  by  Lehner  and Wing (refs.  6  and 7). 
A  second  application of this  technique was made by KuSEer and  Zweifel  (ref.  14)  to  the 
time-dependent,  one-speed  albedo  problem  for a semi-infinite  medium.  Finally,  Erdmann 
and  Lurie  (refs.  15  and  16)  have  also  utilized this approach in a two-media  time-dependent 
problem,  the  time  decay of a plane  isotropic  burst of monoenergetic  neutrons  introduced 
at  the  interface of two dissimilar  semi-infinite  media. In all these  time-dependent  solu- 
tions,  contributions  due  to  various  parts of the  spectrum of the  transport  operator  have 
been  indicated by suitably  deforming  the  integration  contour of the  inverse  Laplace 
transformation. In view of these  successful  applications of Case's  technique,  in  particu- 
lar  references  15  and  16,  this  technique  has  been  chosen  to  analyze  the  present  problem. 
In this  problem,  one would expect  to  find  discrete  time  eigenvalues  (time  constants)  and 
obtain  some  insight  copcerning  their  behavior as a function of material  properties.  Since 
the  reflectors  can  scatter as well as absorb  neutrons,  the  solutions  for  the  bare slab and 
slab  surrounded by purely  absorbing  media are included  and it is shown that  the  present 
solution  agrees  with  such  solutions  (refs.  6  to 9) for  these  special  cases.  Some  pre- 
liminary  results of the  present  work  were  given  in  reference  17  and a summary of the 
present  results is given  in  reference  18. 

SYMBOLS 

A nondimensional slab half-thickness  (see  eq. (118)) 

Am,am,bm  expansion  coefficients  in  Case's  normal-mode  expansion  for  medium  m 
(see  eq. (29)) 

Am*,am*  definite  parity  expansion  coefficients  (see  eq. (32)) 
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a slab half  -thickness 

” 

Bm*,bl*  expansion  coefficients for solution of associated  eigenvalue  problem 
(see eq.  (76)) 

C’ contour  in  zl-plane (see fig. 3) 

Cm  contours  in  s-plane (see figs.  2  and 4) 

c m i  expansion  coefficients  in  full-range  normal-mode  expansion of initial 
distribution  in  medium  m (see eq. (47)) 

cP contour  in  s-plane  (see  fig. 4) 

cm  mean  number of secondary  neutrons  per  collision  in  medium  m 

Em*  expansion  coefficients  defined  by  equations (50) 

F m ~ 7  F* integrations  over  initial  distribution f(x,p) given by equation (46) 
N 

f initial  neutron  angular flux, generally  referred  to as the  initial 
distribution 

fm*  definite  parity  parts of initial  distribution  in  medium  m  (see  eq.  (16)) 

gm solution of equation (42) 

hm given  by  equation (80) 

Im(  ),Re( ) imaginary  and real pa r t s  

Im*  inhomogeneous t e rms  given  by  equations (55) and (57) 

Jm, inhomogeneous t e rms  given  by  equations (56) and (58) 

k given  by  equation (62) 

Lm* integrations  over  initial  distribution f(x,p) defined  by  equation (67) 

4 



'm 

M* 

NIn 

P 

Sn 

t 

z 

lower  limits  given by equation (68) 

integrations  over  initial  distribution f(x,p) given by equations (74) 
and (75) 

given by equation (80) 

denotes  that  Cauchy  principal  value is to be taken upon integration 

denote  regions  in  s-plane  (see  figs. 2 and 4) 

complex  variable of Laplace  transformation  (see eq. (6)) 

denote  values of s for which associated  eigenvalue  problem  has 
nontrivial  solutions 

real  time  multiplied by  constant  neutron  speed 

Case's  X-functions  given by equations (59) to (61), respectively 

geometric  coordinate  perpendicular  to slab faces  (see  fig. 1) 

complex  variable 

defined  in  equation (28) 

given  by  equation (89) 

given by equation (90) 

associated with inverse  Laplace  transformation  (see eq. (7)) 

defined by equation (30) 

Dirac  delta  function 

given by equation (118) 
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denote  values of < for which associated  eigenvalue  problem  has non- 
trivial  solutions 

TO Tn with  largest real par t  

'm defined  by  equation (25) 

I.1 direction  cosine  (see fig. 1) 

V introduced as complex  separation  parameter  in  equation (22) but used 
thereafter as real, z being  used  to  denote  complex  values 

*"Om 

Om total  macroscopic  cross  section  for  medium m 

values of z for  which S~,(Z,S) = 0 

OR, OD given  by  equation (118) 

omin = min 01~02 0 
given  by  equation (110) 

continuum  mode in  Case's  method  (see eq. (24)) 

discrete  mode  in  Case's  method (see eq. (26)) 

neutron  angular f l u x  

definite  parity  parts of Laplace  transform of neutron  angular f lux ,  
generally  referred to as transformed  solution 

+* in  medium  m (see eq. (17)) 

par ts  of J/mrt (see eq. (31)) 

an  elementary  solution (see eq. (22)) 

solution of associated  eigenvalue  problem 



‘m 

‘In 
Subscripts: 

C 

e,i 

m 

n 

P 

U 

V 

f 

Superscript: 

f 

dispersion  function  (given  by  eq. (27)) 

given  by  equation (49) 

complimentary  solution 

regions  exterior  and  interior  to a curve 

physical  medium, 1 for  reflector  and  2  for slab 

eigenvalue, 0 for the  one  with  largest  real  part 

particular  solution 

solution due to  part of initial  distribution which has not  been  scattered, 
that is, uncollided 

associated  with  continuum  modes 

definite  parity, + for even  and - for odd 

limiting  values of a function  on its branch  cut as argument  approaches 
cut  from  upper (+) and  lower (-) half  -planes. 

A bar over a symbol  denotes  the  associated  eigenvalue  problem  quantity. 

PROBLEM DEFINITION 

Basic  Equations 

Consider a slab of material which scatters  neutrons  isotropically  (in  the  laboratory 
system),  extends  from  x = -a to x = a, and is characterized by a total  macroscopic 
cross  section 02 and a mean  number of secondary  neutrons  per  collision  c2.  This 
uniform slab is surrounded by uniform  infinitely  thick  reflectors of another  material 
characterized by the  nuclear  properties “1 and c1.  (See  fig. 1.) For isotropic 
scattering of monoenergetic  neutrons  in a sourceless  medium  with  plane  geometry,  the 
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clJ 01 

-a i O 1  I 

R e f l e c t o r  s1 .a 

I D X  
3. 

b R e f l e c t o r  

Figure 1.- Geometry of problem. 

neutron  angular  flux  \k(x,p,t) satisfies the  equation  (see  refs. 1, 2, and 3 for a complete 
list of the  approximations  and  assumptions): 

where t is the  real  time  multiplied by the  constant  neutron  speed, x and p a r e  
shown in  figure 1, and u(x) and  c(x) a r e  given by 

Since  multiplying  media a r e  not of infinite  extent,  c1  has  been  taken  to  be  less  than 
unity.  Therefore,  equation (1) is to  be  solved  subject  to  the  boundary  conditions 

lim  \k(x,p,t) = 0 (1x1 - m) ( 3) 

and  the  continuity  conditions 

*(*a+,p,t) = \k(*a-,p,t) 
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given  the  initial  condition 

Nv-uo = f(X,PL) (5) 

which is assumed  to satisfy equation (3) and  be  extendable  without  poles o r  branch  cuts  in 
the  finite  p-plane  except  perhaps  for a discontinuity  across  the  imaginary axis. When 
the  material  properties of the  reflectors  are  taken  to  be  those of a vacuum,  this  problem 
reduces  to  that of references 6 and 7 whereas  for  purely  absorbing  medium, it reduces  to 
that  considered  in  references  8  and 9. When o(x) is constant  and  c(x) = 1 (that is, 
neutrons a r e  conserved)  equation (1) is the  one-dimensional  Boltzmann  equation  for  the 
Lorentz  model of kinetic  theory  (ref.  19). 

The  general  procedure  used  here  to  solve  the  mathematical  problem  presented  in 
equations (1) to (5) consists of the  following  steps: 

(1) Remove  the  t-dependence  with a Laplace  transformation 

(2)  Solve the  transformed  equation by applying  Case's  technique 

(3) Determine  the  analytic  properties of this  transformed  solution  in  some  right- 
half s -plane 

(4) Recover  the  t-dependence  and  simplify by suitably  deforming  the  integration 
path of the  inverse  transformation 

(5) Calculate  real  discrete  time  eigenvalues as a function of material  properties if 
and when they  exist. 

Since  many  details  are  involved  in  performing  these  few  steps, a brief  synopsis is 
given.  Step (1) is easy  and  the  transformed  equation  and  boundary  conditions are given by 
equations (8) to (10). Step  (2) is accomplished  by  construction of a solution  from  Case's 
elementary  solutions,  or  normal  modes.  Since  the  geometrical  symmetry  aids  in  this 
construction,  symmetry  properties are introduced  immediately  after  the  time  removal. 
The  elementary  solutions of Case  are  given by equations (24) to (28). For  details  con- 
cerning  these  solutions  and  their  completeness  and  orthogonality  properties,  the  reader 
is referred  to  references 2, 11 to 16, and 20. Appendixes A and  C  summarize  the 
important  results  taken  from  these  references which are  required  in this report. Con- 
struction of the  transformed  solution is done in  the  section so titled  and a few  details a r e  
given  in  appendixes B and D. Equations (50) to (58) give  the  expansion  coefficients of the 
transformed  solution  implicitly.  Extension of these  equations  to  the  complex  plane is 
presented  in  appendix  E.  Since  the  solution  valid  for all regions of the  transform  plane 
is needed  for  step (3), it is obtained  in  the  same  section  and is given by equations (70) to 
(73). Step (3) is performed  in  the  section  "Properties of Transformed Solution"  and 
many of the  details   are given  in  appendixes F, G, and H. In particular,  one  must  examine 
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where  the  zssociated  eigenvalue  problem  has  nontrivial  solutions  and show how these 
solutions  enter  the  transformed  solution.  Details  for  step (4) a r e  found in  the  section 
"Recovery of Time-Dependent  Solution"  and  appendix I. The  previously  cited  results 
(refs. 12 to  16)  lead  one  to  expect  that  the  reflectors  should  contribute  continuous- 
spectrum  type  terms  typical of a semi-infinite  medium  whereas  the  central  slab  should 
give rise  to  some  point-spectrum  type  terms  and  their  corresponding  discrete  time 
eigenvalues.  The  solution @(x,p,t) is given  by  equation (114). Step (5), the  calculation 
of real  time  eigenvalues, is outlined  rather  explicitly  in  appendix J and  the  numerical 
results  are  presented  and  discussed  in  the  section  "Calculation of Time  Eigenvalues." 
The  report is concluded  with a short  section  showing how for  special  values of the  nuclear 
properties  the  present  solution  reduces  to  those  obtained  previously by others  (refs. 6 
to 9) who used a different  method. 

Time  Removal 

If one  takes  the  Laplace  transformation of @(x,p,t) as 

+(x,p,s) = e-stQ(x,p,t) dt 10- 
then  the  inverse  transformation  required  to  recover  the  t-dependence is 

where y is to  the  right of all singularities  and  branch  cuts of +(x,p,s)  in  the  trans- 
form  plane  (s-plane).  From  previously  cited work of others, it is expected  that  the  path 
of integration  in  equation (7) can  be  deformed  to  indicate  more  precisely  the  character 
of @(x,p,t). When the  transformation of equation (6) is applied  to  equation (l), integra- 
tion by parts is performed  in  the  usual  manner,  and  use of the  initial  condition (5) is 
made,  the  following  expression is obtained: 

Equations (3) and (4) become  under  the  same  transformation 

lim +(x,p,s) = 0 (1x1 - -> 
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and 

Symmetry  Considerations 

Before  applying  Case's  technique  to  solve  equation (8) subject  to  conditions (9) 
and (lo),  it is useful  to  examine  some  symmetry  properties of the  transformed  solution 
which  follow  directly  from  the  governing  equations. In references 12 and  13,  these  ideas 
were  introduced  at a later step, but here  they  aid  in  the  construction of the  solution. An 
arbitrary function of two variables g(x,,u) can  be  written as the  sum of its even  and odd 
parts,  namely,  g+(x,p)  and  g-(x,p).  They a r e  given, of course, by 

and  have  the  property 

Since  c(x)  and ~ ( x )   a r e  even  functions of x, it is easily shown from  equation (8) that 
the  even  and  odd  parts of +(x,p,s) obey  the  equation 

and 

where  the f subscripts  denote  definite  parity  parts of a function,  that is, even  and odd. 
(See eqs. (11) and (12).) Equations (13) to (15) indicate  the following: 

(1) All  solutions of the  homogeneous  equation  associated  with  equation (13) can  be 
made  to  have a definite  parity. 

(2) The  boundary  conditions  preserve  the  parity. 

11 



(3) The  definite  parity  parts of an  initial  distribution  excite  inhomogeneous  solu- 
tions of corresponding  definite  parity. 

Therefore,  this  problem  can  be  separated  into two problems,  one  for ++, the  other 
for +-, and  the  results  can  be  combined at any  stage of the  calculation.  The  functions 
f*(x,p)  and  +*(x,p,s) are broken  up as 

and 

(1x1 < a) 

so that  equations (13) to (15) become 

where  throughout  the  subscript m = 1 denotes  medium 1 and m = 2  denotes  medium 2, 

and 

The  notation  gm*(a,p)  means  the  limit of g*(x,p) as x -. a from  medium m. 

Elementary  Solutions 

Solutions of equations (18) are  constructed  from  Case's  elementary  solutions which 
are denoted  here as +mv(x,p,s).  These  elementary  solutions are solutions of the  homo- 
geneous  equation  corresponding  to  equation (18); that is, 

in  the  form 
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where v is a complex  parameter  introduced  in  this  separation of variables  and 

qmv(P9 s) is normalized as 

These  solutions  have  been  investigated  in  references  12  to 16 and  many of their results 
are given  in  appendix A and are used  herein.  They  show  that  the  values of v for  which 
solutions qmv(p,s) can  be  found are v real (-1 5 v 2 1) and  for  some  region of the 
s-plane I, = kvom. For -1 5 u 5 1, the solutions are 

where P denotes that the  Cauchy  principal  value is to be taken upon integration, 
6(v - p) is the  Dirac  delta  function,  and  hm(v,s) is determined  from  the  normalization 
as 

These are called the continuum  modes  and exist for all values of s. There a r e  two 
discrete  solutions 

at v = *vom provided  that  the  function SZm(z,s) 

of two  complex  variables s and  z  vanishes at the two  points  z = *vOm(s). This con- 
dition  occurs when s lies inside  the  curve  Cm (s E Smi, see fig. 2) defined  by  (see 
refs. 12  and  13) 

Note that ”om is an  analytic  function of s for s E Smi except  for a branch  cut  on the 
rea l  s-axis between -om and  -um(l - cm)  and that +vOm  denotes that zero of 
8,(z,s) for which Re@ > 0 when Re(s) > - Um(1 - Cm). The important  result is 
that  the  general  solution of equation (21) can be expressed as the  linear  combination 

om) 

1 3  



i ~ c , , , ~ ~ / 2  

Branch cut of vOm(S)  
Rs(s) 

- i R C r n 0 n / 2  

Figure 2.- Regions i n  a single-medium  s-plane.  Location of Im(s) axis 
depends on whether % >< 1. 

where 6,(s) is defined as 

6,(s) c 
and  the  s-dependence of the  expansion  coefficients  has not been  determined.  Note  that 
the  present  notation is slightly  different  than  that  used by other  authors. 

CONSTRUCTION OF TRANSFORMED SOLUTION 

Solutions of equation (18) a r e  now obtained by constructing  even  and odd particular 
solutions Q (xypys) and  adding  to  them  solutions of the  corresponding  homogeneous 
equations ~ ) ~ ~ ~ ( x , p , s )  so that  conditions (19) and (20) can  be  satisfied;  that is, 

mP* 
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The  functions qmC* and +mp* are  constructed  from  Case's  elementary  solutions 
I $ ~ ~ ( X , ~ , S ) .  One must  select  the  expansion  coefficients  in a general  expansion,  such as 
equation (29), so that  the  given  boundary  conditions  are  satisfied. 

Explicit  Form of +bmc* 

The  solution  in  the  form of equation (29) does not have  definite  parity.  However, 
for a medium  which is connected  and  symmetric  about  x = 0 (such as the slab), even 
and  odd  solutions @zcrt can  be  written as 

where  the  expansion  coefficients  have  been  redefined as 

a2* = %(a2 * b2) 
1 1 

Note that the  properties 

(33 1 

have  been  used. 

For a medium  which  extends to infinity  in  the  x-direction  (such as the  reflectors), 
the  boundary  conditions (9) require  that 

or  

a1 = Al(v) 9 0 (0 5 v 2 1 if x - -w) (35b) 
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for 
the 

for Re(s) > -ol. The  continuity  conhtions (10) and  the  parity of the  solutions qZc* are 
used  next to relate the  primed  and  unprimed  coefficients  in  equation (36). One  finds  that 
an  even  solution  inside  the  slab  requires 

“1’ = bl 

Al’(v) = A1(-v) 

whereas  an odd  solution  inside  the  slab  requires 

all = -bl  

Al’(v) = - A ~ ( - v )  

In  view of equations  (37a)  and  (37b),  one  defines,  respectively, 

a1+ = b l  

A~+(-LJ) E A ~ ( - v )  

and 

(0 5 v 5 1’1 

(0 5 v s lj 

In  terms of these  coefficients, +lC* can  be  written  from  equation (36) as 
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for  Re(s) > -ol. 

Explicit  Form of +mp* 

The  definite  parity  particular  solutions + are  constructed  from two particular mP* 
solutions Gmp as 

The  solutions +mp a r e  obtained  in a conventional  way by integration of a Green's  func- 
tion  gm  for  medium  m  over all the  medium; that is, as 

The  function g, satisfies  the  equation: 

This  equation is seen  to  be  the  homogeneous  equation  corresponding  to  equation (18) for 
x # XO. When one  integrates  over all x0 in  medium  m, it is seen that equation (18) is 
obtained.  Note  that gm is not exactly  what is customarily  called  the  Green's  function, 
since 6(x - "0) has been  weighted  with  fm(x0,P). Upon integrating  equation (42) on x 
from x0 - E to x0 + E and  taking  the  limit E - 0, one  obtains  the  jump  condition 

In appendix B, g, is constructed  from  Case's  elementary  solutions  and, as a result,  the 
explicit  forms of qZp,. and +lprt can be  written as 
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for Re(s) > -01, where 
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where w = *voj and v, -1 5 v S 1. Here the Cm* are full-range  expansion  coefficients* 
of the function f,,(x,p)/p and are given  by 

and if s E Smi, 
\ 

Throughout,  the + and - superscripts are used  to  denote the limiting  values of a func- 
tion  on its branch  cut as the  argument  approaches the cut  from the upper (+) and  lower (-) 
half-planes. The function slm(Z,S) of equation (27) has a branch  cut  along the real 
z-axis (-1,l) where its limiting  values are given  by 

a&,s) = xm(v,s) f 
im, om v 

2 
(-1 6 v6 1) (48) 

The  functions s l ~ ( z , s )  are defined  by 

Equations  for  Expansion  Coefficients 

Solutions  in  medium 1, 1x1 > a, have  been  constructed so that the  boundary  condi- 
tion (19) is satisfied.  Application of the continuity  condition (20) permits the determina- 
tion of the unknown expansion  coefficients of +mc, which are implicit  in  equation (31) ; 
that is, if one  substitutes  x = a in  equation  (31),  applies  the  continuity  condition (20), 
and  uses  the  explicit  forms of +mc*  given  by  equations (32) and  (39), a two-media  full- 
range  expansion  involving the cymv which  contains unknown coefficients a,, and Am* 

* Note that the  parity of these coefficients is opposite that indicated  by the sub- 
script  because of the l/p factor.  Nevertheless, the solutions +mp* are easily  seen  to 
have the indicated  parity. 
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is obtained.  The  same  expansion is, of course,  obtained  for  x = -a. This  type of 
expansion  and its orthogonality  relations are discussed  in  appendix  C  and it is shown  in 
appendix D that  such  an  expansion is obtained  for  the  present  problem.  Erdmann  (ref. 15) 
proved  completeness  theorems which  apply  in  such  time-dependent  problems  while 
KuSEer, McCormick,  and  Summerfield (ref. 20) derived  orthogonality  relations which a r e  
applicable  to  two-media  expansions  which arise in  time-independent  problems.  In 
appendix C, their   results are extended  to  obtain  orthogonality  relations  which are valid 
for all regions of the  transform  plane.  As  usual  in  problems  involving a slab,  one  cannot 
obtain  closed-form  solutions  for  the  expansion  coefficients.  However,  the  orthogonality 
relations  (appendix C) can  be  used  to  obtain  expressions  which  give  the  expansion  coeffi- 
cients  implicitly;  that is, the  continuum  coefficients A2,(v) a r e  given as the  solutions of 
Fredholm  integral  equations  and all the  other  coefficients  are  obtained  from  A~*(v). For 
later convenience,  however,  expressions  are  obtained  for  these  coefficients  in  the  form 

Use of the  orthogonality  relations  leads, after some  algebra,  to  the  following  equations: 

1 
2 + -a2* e - (“+ 02) aP02 

(0 2 v 2 1) (51) 

x0(-V02,s) 1 
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+ 62(4 a2*  e (0 s v 2 1) (53) 

and 

The I,, and Jm* terms  in  equations (51) to  (54) which  contain  only  integrations Over 
the  initial  distribution are therefore known functions  when  f(x,p) is specified  and are 
given  by 



J 

and 
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In these  equations,  the  X0m  functions  which  were  shown  in  reference  14  to  be  continuous 
across  the  curves Cm in  the  s-plane (see appendix  A  and  fig. 2) have  been  used.  For 
two  material  media,  one takes the  ratio of these  single-medium Xom functions 

where 

and 

*} v - z  

For  Re(z) < 0, Xo(z,s) given  by  equation (59) is a nonvanishing  analytic  function of z 

and s provided s d -om, -cm(l -  Cm)), the  branch  cut of vom(s), m = 1,2.  The 

quantity 

is related to  the  difference  between  medium 1 and  medium  2  continuum  solutions;  several 
equivalent  expressions  for k are given  in  appendix C. 

Equations (50) to (58) determine  the  expansion  coefficients Am, and am, as 
follows.  Recall  that  the  inhomogeneous  terms Imh and Jm, a r e  known functions  for a 
given  initial  distribution  f(x,p).  Equation (52) is used  to  eliminate a2* from  equa- 
tion (51) and upon using  equation  (50),  one  obtains  an  inhomogeneous  Fredholm  integral 
equation  for  the unknown coefficient A2*. It is seen  from  equations (52),  (53), and (54) 
that  the  remaining unknown coefficients a r e  given  in  terms of  A2* and  other known 
functions.  However,  one  needs  to know the  analytic  properties of the  transformed  solu- 
tion +* in  the  s-plane  in  order  to  invert  the  Laplace  transform.  For  part of this  inves- 
tigation,  another  form of the  solution is much  more  convenient. 

Complex  Representation of +*(x,p,s) 

In equations (50), the  coefficient Em,(v,s) were  introduced  since  they are the  forms 
of the  normal-mode  expansion  coefficients  which are extendable  to  the  complex  plane. 
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(See ref. 21.) Thus,  equations (51) to  (58) can  be  written  in a Compact form  valid  for 
&(s) > -urnin = -min u1,u2 . A brief  outline of this extension to the  complex  plane is 
given  in  appendix  E. 

0 

and 

Il*(z,s) = TL1,(-a,z,s) e -2( 1) / * __ c2 02 
clul ~2*(a ,z , s )  

s+u a z 

The functions  Lmf(x,z,s) which appear  in  equations (65) and (66) are given by 
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with 

22 = -a J 
and  are  analytic  for  Re(s) > -om. These  functions  were  introduced  for  z = v, 0 5 v 5 1, 
as 

in order  to  extend Fm, to  the  complex  plane.  In  equations (63) to  (69), z does not lie 
outside  the  contour C' which encircles vOm as shown in  figure 3. The  restriction 
Re(s) > -amin is discussed  in  the  next  section. 

Figure 3 .  - Contour C ' i n  z "plane. 

That  equations (63) to (66) reduce to  equations (51) to (58) as all contours C' a r e  
collapsed  onto  the  branch  cut v E (0,l) due to  CLm(Z,S) (refer  to  fig. 3) can  be  seen as 

follows. If s E Smi, Pm(zfl- '  has a pole at z = vom whose  residue  leads  to a dis- 
crete  term. When s E Sme, CLm(Z) does  not  vanish.  The  continuum terms  are   s imply 
those due to  the  integration  around  the  branch  cut. 
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The  solutions + m c f ( ~ , p , ~ )  and  +mpk(x,p,s)  can now be  written  simi- 
larly as 

for  

for Re(s) > -omin, 

for Re(s) > -02, and 

I 1 

for Re(s) > -ol. 
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The  functions M*(x,z,s) are  also  integrations  over  the  initial  distribution fl*(x,,u) 
and  are  given by 

and 

for  Re(s) > -01 and z not outside C'. Again, the  discrete  and  continuum  terms which 
appear  in  equations  (32), (39), (44), and (45) a r e  due to  the  zeros  and  branch  cuts of 
am(z,s)  which appear  in  the  integrands of equations (70) to (73). 

PROPERTIES OF TRANSFORMED SOLUTION 

General  Properties  in  s-Plane 

Analytic  properties of @*(x,p,s) as a function of s must be investigated  before 
the  time-dependent  solution \k(x,p,t) can  be  recovered  according  to  the  inverse  Laplace 
transformation  given by equation (7). To do this,  the  behavior of in  some  right-half 
s-plane is required.  Before  looking at the  details, a review of some  results of earlier 
cited  work  in which Case's  method was used is in  order.  In  these  works,  the  analytic 
properties of the  functions of s such as vOm, am, and  the  various  X-functions  are 
given. 

In the  semi-infinite  medium  problems  considered  in  references 14 to 16,  expan- 
sion  coefficients  could be  found  explicitly  and  this  fact  aided  in  the  extraction of the 
s-dependence of the  transformed  solutions.  These  solutions  were found to  contain  the 
branch  cuts of vOm(s) so that the  integration  contour of the  inverse  Laplace  transfor- 
mation was deformed  around  these  branch  cuts. For the slab problem  solved  in  refer- 
ences 12 and  13,  expansion  coefficients  could not be  found  explicitly but the  theorems of 
references  6  and 7 gave  the  analytic  properties of the  transformed  solution  in  the  s-plane. 
In  that  problem,  the  solution  does not contain  the  branch  cut of vo(s) even  though vo(s) 
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appears  explicitly  in it. Instead,  there  are a finite  number of poles at values of s, for 
example, so, . . ., sN, which lie  on  the  branch  cut of V O ( S ) ,  that is, on  the  real s-axis. 
These  poles  contribute a sum of residues as the  integration  contour is moved to  the  left 
of them  in  the  s-plane.  Furthermore,  in  these  previously  solved  time-dependent  prob- 
lems,  there is a real  number, for example  yl,  such  that  the  integration  contour cannot 
be  deformed  into  the  region  Re(s) < 71 for  arbitrary  values of x. The  present  trans- 
formed  solution  should  exhibit  similar  properties;  that is, +* may not be  analytic  for 
Re(s)  less  than  some  number  y1 when x is arbitrary  whereas  for  Re(s)  greater 
than q ,  it should  be  analytic  except  for  poles  and/or  branch  cuts. Such singularities 
probably  occur  where vom(s) has its branch  cut. 

First note  that  for  arbitrary  initial  distributions  f(x,p), +*(x,p,s) is not analytic 
for  Re(s) < -omin. This  statement is true  since  each of the  inhomogeneous t e rms  I,, 
of equations (63) and (64) contains  both Ll* and L2* as can  be  seen  from  equa- 
tions (65) and (66) and  one of the  two  will not be  analytic  for  Re(s) < -amin = -min(ol,u2). 
In particular,  note  that  for 1x1 > a, $1*(x,,u,s) never  appears  to  be  analytic  for 
Re(s) < -urnin.  However,  for  special  cases of material  properties  and  initial  distribu- 
tions, $ 2 f ( ~ , p , ~ )  can  be shown to be  analytic  for -02 < Re(s) < -01 except  perhaps  for 
poles. 

Consider now the  behavior of +* for  Re(s) > -urnin.  Note  that  the  transform 
plane for the  present  problem  must  be  taken as a superposition of two "single-medium" 
planes,  that is, one  for  each  material  medium  in  the  problem.  The  expressions (32),  (39), 
(44),  and (45) for  the  transformed  solution  were not defined  for s E Cm  and  outwardly 
appear  to be discontinuous at s E Cm.  However,  this is not the  case.  The  complex 
representation of E,* given by equations (63) and (64) shows  that  such  coefficients a r e  
continuous  across  the  curves Cm. Thus, it is seen  from  the  representation of +* 
given  in  equations (70) to (73) that +* is indeed  continuous across  the  curves Cm. 

The  Associated  Eigenvalue  Problem 

It is convenient  to  introduce at this  time  the  solution of the  associated  eigenvalue 
problem,  that is, the  solution of equation (18) subject  to  the  boundary  conditions (19) and 
(20) with fm*(x,,u) = 0. Such  solutions,  denoted  with a bar,  have  the  form 
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(x < -a) 

where  obviously Bm* and 61* can  be  obtained  from  the Em, given by equations (63) 
and (64) in  the  case fm*(x,p) = 0. It  will  be  seen  later  that  the  solution I$* has  poles 
at those  values of s for which the  associated  eigenvalue  problem  has  nontrivial  solu- 
tions.  In  appendix F, it is shown that as the slab thickness  becomes  very  large,  this 
eigenvalue  problem  has  only  trivial  solutions  for  Re(s) > -02 except  perhaps on the 
branch  cuts of vom(s). When the slab thickness is not large,  one still expects that if the 
eigenvalue  problem  has  nontrivial  solutions  for  Re(s) > -02, they  occur  only  when s is 
real.  This  statement  has  been  proved  rigorously by using  the  approach of Lehner  and 
Wing (refs.  6  and 7) for  several   problems which are   special   cases  of the  present  problem: 
the  bare slab considered  in  references  6  and 7 and  the slab surrounded by pure  absorbers  
considered  in  references 8 and 9. In all these  problems,  there is no scattering  in  the 
reflector  and,  therefore, no branch  cut of vol(s). As already  indicated,  the Xo(z,s) 
function  contains  the  branch  cuts  due  to  both vol(s) and vo2(s) and  these  branch  cuts 
lie on the  real  s-axis from -Om to -Um(l - Cm) and  may  or  may not overlap  depending 
on  the  values of material  properties. Note that  c1  has  been  taken  less  than  unity  and 
this  insures  that  the  branch  cut of vo1 lies  entirely  to  the  left of s = 0. In previously 
solved  time-dependent  problems,  singularities of the  transformed  solution  always  occur 
where  the VOm(S) has  branch  cuts.  Since  the  analysis of appendix F indicates that for 
large  values of the slab half-thickness a, the  singularities of J/, for  Re(s) > -Umin 
also  occur  where  the vOm(s) have  branch  cuts, it will  be  assumed  for all values of a 
that  the  singularities of +* occur  on  the  branch  cuts of vo,(s). In any  case,  it is 
shown that  the only other  singularities of +*, Re(s) > -omin which  could  occur off the 
branch  cuts of  Vom(S) are  poles,  whose  residue  could  readily  be  added  to  the  time- 
dependent  solution. 
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In  order  to  determine  the  behavior of I)* on  the  branch  cuts of vom(s) one f i r s t  
considers ?* in  the  region s E Sli n S2i. For this  region,  the  expansion  coefficients 
are given  by  the  following  equations.  (See  appendix G for a brief  description of the  man- 
ner  in which  these  equations  were  obtained.) 

(0 2 p 2 1) (77) 

and 

where 

O =  h2k02) * 
"01 + "02 - v02 + s,' 

must  be  satisfied. As noted  in  appendix G, this  equation is an  additional  constraint  on  the 
solutions of equation  (77).  Since  the  eigenvalue  condition (81) has  different  limiting 
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values as s approaches  the  branch  cut of vol(s), it is concluded  that  there  are  only 
trivial  solutions of the  associated  eigenvalue  problem  on  the vol(s) cut. When s 
belongs  to  the  branch  cut of v02(s)  which is not a lso  par t  of the vol(s) cut,  that is, 
when  Re(v02) = Im (v01) = 0, it appears  that  nontrivial  solutions of the  associated  eigen- 
value  problem  may  exist.  From Bowden's results  for  the  bare slab (refs.  12  and  13), it 
is expected  that  equations (77) and (81) are   sat isf ied only at isolated  points en}. In  the 
l imi t   qu2a  - w, these  points  lie  on  the  branch  cut of v02(s), that is, the Sn a r e  real. 
The  "thick-slab"  eigenvalue  condition is seen  from  equations (77) and (81) to  be  equa- 
tion (81)  with B2*(p) = 0. 

Lf material  properties  are  such  that -u2 < -u1, then  part of the  branch  cut of 
vo2(s) l ies  in s E S2i n Sle. In this  region  however, s < -Umin = -01 and  for  such 

values,  the  solution  v*(x,p,s), 1x1 > a, that is is not  bounded as 1x1 - m. How- 
ever, +2* may  have  nontrivial  solutions  on  such a part  of the  branch  cut of V O ~ ( S ) .  

The  equation  for B2* and  the  additional  constraint  for  this  region a r e  (again, s ee  
appendix G for  some  discussion) 

- 
- 

and 

It will be seen  later  that  the  zeros of equation (83) can,  under  some  conditions,  be  poles 
of +2* and  therefore  may  contribute  discrete  modes  in  +(x,p,t), 1x1 < a. For  this 
reason one is interested  in  where  these  zeros  lie.  They  will  be  referred  to as 
pseudo-eigenvalues. 

Relationship  Between +* and T* 
It is now shown how the  solution of the  associated  eigenvalue  problem Tk is con- 

tained  in  the  inhomogeneous  solution ** by  following a procedure  similar  to  that of 
Bowden and  Williams  (ref.  13).  In  appendix H, it is shown that the  original  expansion 
coefficients of equations (32) and (39) can  be  written as 

a 
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and 

where  Bmk  and are given  by  equations (77) to  (79). The  coefficients  Bmk  and 
b1* are given  by 

- 

. 

and 
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The coefficient E2*  + 2 F ~ * ( a , v ~ 2 , s ~  1 is given  by 

In these  equations, a1*, a2*, PI,, and  are  

and 



and 

The  solution  +l*(x,p,s) for x < -a has a similar  form.  In  these  equations, 
+m*(x,p,s) are   the  par ts  of g*(x,p,s) which a r e  given  by  equation (76). Equa- 
tion (79) is writ ten  in  terms of 0 1 ~  as 

- 
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Properties of $* on  the  Branch  Cuts of vom(s) 

Consider now what  happens  on  the  branch  cut of v01 (s) where "01 = i I voll f o r  
Im(s) = 0-  and v01 = -i lvoll for  Im(s) = O+. From  these  equations, it can  be  shown 
that  the  quantities B2*,  B1*,  Ba,,  B1*, aik, a2*, &*, and &* do  not  contain 
the  branch  cut of vol(s). Equations (93) and (87) show  that  and bl* have  branch 

cuts  due  to  that of v01(s). Equation (88) indicates  that a2* + ZF2*(a,v02,~)  has  the 

branch  cut  due  to vol(s)  unless  al*/a2* is equal  to pl*/&. In general,  this  state- 
ment  will not be  true  since &*/&* depends  on  the  arbitrary  initial  distribution f,(x,p) 
whereas  alrt/a2*  does not. Therefore, it is concluded  that  both  and q2+ con- 
tain  the  branch  cut of vol(s). 

- - 

1 

On the  branch  cut of v02(s),  the  quantities B z ~ ,  B1*, blk, PI,, and p2* are 
single  valued.  Since  the  quantities al* and  a2* of equation (89) are related  above 
and  below  the  branch  cut of v02(s) by 

it follows  then  from  equation (88) that  on that par t  of the  branch  cut of vO2(s)  which is 
not also  part  of the v01(s) cut,  that is, for  Re vo2 = Im v01 = 0, one has 0 0 

if the  denominator  on  the  right-hand side of equation (88) does  not  vanish. It is seen  from 
equations (76) to (79) that  for  this  same  region, 

Hence,  the  product 

which  appears  in $* does  not  contain  the  branch  cut of vO2(s). However,  the  denomi- 

nator of a2* + ~F2+(a,v02,s),  namely v o l a l *  - a2*, is equivalent  to the eigenvalue  con- 

dition (eq.  (81)).  Thus, if the  associated  eigenvalue  problem  has a nontrivial  solution at 
s = sn, Re(s) > -omin then, $* has a pole  there. 

1 
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The  analytic  properties of the  transformed  solution $*(x,p,s)  may  be  summarized 
as follows. For arbitrary  initial  distributions f,(x,p), +* is not analytic  to  the left of 
Re(s) = -umin  in  the  s-plane,  whereas  to  the  right of Re(s) = -amin it is analytic  except 

for the  branch  cut  along (-urnin,  -u1(1- c1)) (due to  the  branch  cut of vol(s)) if 

Omin > ul(l - c1) and  poles  at  the  values of s at which  the  associated  eigenvalue  prob- 
lem  has  nontrivial.  solutions $*. It has  been  assumed  that  for  arbitrary  slab  thick- 
nesses a, these  poles, if  they  exist, lie on the  branch  cut of V O ~ ( S )  since  this  result is 
the  rigorous  one  obtained by others  for  several  special  cases of the  present  problem  and 
obtained  herein  for  the case when  c2u2a is large. For special  values of material  prop- 
erties and  initial data, +*(x,p,s) for  1x1 < a (that is, $22,) may  be  analytic  in  the 
region -a2 < Re(s) < -01 except  perhaps  for  poles. 

RECOVERY O F  TIME-DEPENDENT SOLUTION 

The  time-dependent  solution  \k(x,p,t) is obtained  from  the  inverse  Laplace 
transformation (eq. (7)) where y is to  the  right of all singularities of +(x,p,s) 
in  the  s-plane.  From  the  preceding  analysis, it is expected  that  one  can  choose  any 

y > max(-al(l - cl), -q(l - 9)). In  order  to show  the  time  dependence of the  solution 
q(x,p,t)  more  explicitly,  the  inversion  contour  should  be  deformed as far as possible  to 
the  left  in  the  s-plane  by  making  use of the  analytic  properties of $(x,p,s) obtained  in 
the  previous  section. 

Behavior of $* on  the  Contour  Re(s) = y 

The  behavior of $* on  the  contour  Re(s) = y must  be  examined as Is1 - m. 

(See  fig. 4.) This  contour  crosses both of the  curves  C1  and C2 and it has  been 
shown  that $* is continuous across  these  curves.  As Is1 - 03 on such a contour, 
s E S l e  n Sze  and it is shown  in  appendix I that +* behaves as follows: 
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for 1x1 < a and p < 0, 

for  x > a and p > 0, and 

for x > a and p < 0. Expressions  similar  to  equations (100) and (101) are obtained 
for  x < -a. It is seen that @* is not necessarily 0 - . However, the par ts  which are 
not can be easily  inverted as follows.  Define  for all s the function @ u f ( ~ , p , ~ )  as that 
part  of each of equations (98) to (100) which is not 0 0 .  It is shown  in  appendix I that 
upon making  the  substitution 

( 3  

x - x0 = p t  

+ u f ( ~ , p , ~ )  can be written as 



that is, the  parts of which do not  behave as O@ as Is1 - 00, Re(s) = y can  be 
inverted by inspection.  The  solution \k,,(x,p,t) is given  by 

for 1x1 < a and p > 0; 

for 1x1 < a and p < 0; 

for x > a and p > 0 and 

for x > a and p < 0. That *u* describes  the  motion of uncollided  neutrons  from  the 
initial  distribution  can  be  seen by direct substitution;  that is, *u* satisfies the  equation 

a t  + P T  
4- o(x) qu* = 0 

In  the  limit t - 0, note  that 
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For arbitrary f(x,,u)  which vanishes as 1x1 - a, +u*(x,p,s)  given by equa- 
tions (103) and (104) to (107) is an  analytic  function of s for  Re(s) > -umin  for  almost 
all x and 1.1. If f l *  = 0 (f2* E 0), then is an analytic  function of s for 
Re(s) > -u2 (Re(s) > -ul). Therefore,  the  function @*(x,p,s) defined as 

has  the  same  analytic  properties as +* in  the  right-half  plane  Re(s) > -urnin  except 

that it is 0 - as Is I - 03. If +* has a branch  cut  along (-omin, -01 (1 - cl)),  that is, 
if umin > ul(1 - cl),  then 

(3 

on the  branch  cut.  Similarly, if +* has a pole at s = sn, then 

Residue (@*)s = Residue(+*)sn 
n 

Explicit  Form of \k,(x,p,t) 

The  definite  parity  parts of the  time-dependent  solution  therefore  can  be  written 
from  equation (7) as 

By using  the  analytic  properties,  one  can  deform  the  contour  to  the  left  and  obtain, in 
general, 

+-  lim J +*(x,P,s) est ds (-urnin< -01(1- ci)  <Sn) (114) 
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where Cp is a small  circular  contour of radius p with  center at s = -ol(l - cl). All 
the  contours are indicated  in  figure  4.  Generally,  the  point s = -q(1 - c1) will not 
satisfy  the  eigenvalue  conditions  (eq. (81)) and  the  contribution  from  the  contour Cp 
vanishes as p - 0. If, however, s = -al(l - c1) happens  to  satisfy  equation (81), the 
contribution  from  the  contour Cp has  the  form of a discrete  residue  term.  Details 
concerning  this  point  are  discussed  in  appendixes I and K. 

Deformed 
contour  

I 

Deformed 
contour  

Or ig ina l  
contour  

I 
c2 1 'le> '2e 

"""""- ." 

'le' '2i 

- " 
" ---t-- 

"" ""- 4"- 
O r i g i n a l  
contour  

Figure 4.- Integration contours f o r  the inverse Laphce transformation of 
$(x,p,s) when vol(s) branch cut is embedded  in the v m ( s )  branch 
cut, c2 > 1, and the initial distribution is arbitrary. 

Equation (114) is the  solution of the  time-dependent  problem  written  in a form  in 
which the  uncollided  portion of the  initial  distribution f(x,p) has  been  separated.  For 
arbitrary f(x,p) the  contour  cannot  be  deformed  further  to  the left. It is indicated 
in  the  final  section  that  this  solution  reduces  to  those  obtained  previously  by  others  for 
special  cases of the  present  problem. 

This  section is concluded  by  indicating  the  form of some  par t s  of equation (114). 
The  uncollided  term \kU*(x,p,t) is given  explicitly by equations (104) to (107).  The 

40 



form of +*(x,p,s)  on  the  branch  cut (-urnin, -ul(l  - c1)) was  given  in  the  previous 

section.  From  those  results,  it  follows  that  on  this  branch  cut,  [.*(x,p,sq- - b*(x,p,sU 

can be written  from  equations (91) and (92) as 

+ 

for   x  > a, where b 2 f  + ~ F & L , ~ o ~ , s , ]  is given  by  equation (88), qm*(x,p,s) by 

equation (76) and k1* - F+(-a,vOl,s] by  equation (87). The  solution  +&(x,p,s)  has 

poles at s = so,. . ., sN because of the  poles of E2* + 1 F2~(a,vo2,~)lvo2 (1T1)/2. Again, 

from  the  results  given  in  the  previous  section,  it  follows  that 

1 

Residueb*(x,p,s) est 1 s n  

Note  that  the  factor vo2 (lT1)/’ is introduced so that $*vi.-fT1)/’ and 

E 2 *  + FZ+(a,vo2,s] vdi”)” are single  valued  on the branch  cut of vo2 (see eqs. (95) 

and  (96)).  These  terms  have  an  exponential  time  dependence esnt and the implicit 
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equations,  namely,  equations (77) and (81), from which  the  eigenvalues (.n} can  be 
computed  have  been  obtained.  Since  information  concerning  the  behavior of eigenvalues 
(that is, number,  location,  etc.) as a function of material  properties is not readily 
obtained  analytically  from  such  expressions, a numerical  study of real time  eigenvalues 
has  been  made  and  the  results  are  discussed  in  the  next  section. 

CALCULATION O F  TIME EIGENVALUES 

First note  that  the  eigenvalues  and  pseudo-eigenvalues  depend  on  five  parameters 
(cl, 01, c2, 02, and a) and  therefore  many  numerical  computations would be  required 
in  order  to  determine  the  specific  dependence  on  each  parameter. It will  be  seen  that  the 
bare-slab  results of references  12  and 13, the  theorems of reference  9  for  slabs sur- 
rounded by purely  absorbing  media,  and  some  observations of the  present  numerical 
results  for a few reflected slab  cases  allow  some  conclusions  about  the  behavior of 
eigenvalues  for reflected slabs as a function of the  slab  half-thickness a to  be  drawn. 
However,  rather  than  compute  eigenvalues {Sn} in   t e rms  of c1, 01, c2, 02, and a, 
one  defines a nondimensional  variable [ and  nondimensional  parameters OR, OD, and 
A as 

A = c202a J 
In t e r m s  of these  quantities,  the  branch  cut of  v02 becomes the real interval (0,l) and 
the  branch  cut of  1/01 becomes  the  real  interval (-OD, -UD+UR). Since om and  cm 
a r e  nonnegative, it follows  that 

where  the  equality  holds  only if al = 0. Also c1 has  been  restricted  to  less  than  unity 
so  that -OD + uR 2 1 implies  that  c2 < 1. Obviously, OR = 0 when  the  reflector is a 
purely  absorbing  medium  or a vacuum  and OD = 0 when the  total  macroscopic  cross 
sections of the  two  media are the  same. It has  been  shown  in  the  previous  section  that, 
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in  general,  the  inversion  contour  can  be  deformed to the left  only as f a r  as Re(s) = -umin 
which corresponds  to Re(C) = max(-uD,O). However,  there  are no eigenvalues on the 
branch  cut of v01 so the  region of the  real  <-axis  where  the  eigenvalues {<.> should 
appear is 

This  interval  corresponds  to s E Sl i  n S2i  and  equations  (77)  and (81), writ ten  in  terms 
of the  quantities of equations  (118), are solved  numerically  to  obtain  the  real  eigen- 
values {Cn) for  specified UR, OD, and A. The  pseudo-eigenvalues are obtained 
numerically by solving  equations  (82)  and  (83)  also  written  in  terms of the  quantities of 
equations  (118). In addition,  numerical  results are obtained  in  the  thick-slab  approxima- 
tion,  that is, equation  (81)  with  B2*(p) = 0. Details  concerning  numerical  procedures 
and  computational  equations a r e  given  in  appendix J. 

The  time  dependence of discrete  modes is seen  from  equations (114)  and (117) to  be 

Now 1, = -oD + oR implies  that Sn = -~1(1 - c1) 5 0 since  c1 < 1 and  the  equality 
holds  only if al = 0. Therefore  such cn values  correspond  to  time-decaying  modes 
regardless of the  value of c2. For  values of Cn  within  the  interval  (120),  the  time 
decay  or  growth  depends  on  whether c2Cn is less than or greater  than  unity as c m  be 
seen  from  equation (121). A discrete  mode  represents a crit ical   system if c2Cn = 1. 
The  largest  eigenvalue CO with an  even  parity  eigenfunction  corresponds  to a critical 
slab problem with parameters 

Oslab"critica1 = 50 "J 
where  "critical is the  critical slab half-thickness.  It is generally known (see,  for 
example,  ref. 2) that the  critical  radius  for a bare  sphere (oR = 0) can  be  obtained  from 
the  largest slab eigenvalue C1 with an odd parity  eigenfunction.  That is, when (1 is 
used  in  equations  (122)  in  place of C0, the  "critical is the  bare-sphere  critical  radius. 
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Comparison With Published  Numerical  Results 

Ivlany different  combinations of material   parameters could be considered,  but  here 
the  study of the  eigenvalue  behavior is restricted  to  the  case of overlapping  branch  cuts. 
As OR departs  from  zero,  one would like  to  see how the  eigenvalues  depart  from  those 
previously  repcrted  (refs.  12  and 13) for a bare  slab. A comparison of the  present 
eigenvalues {cn> for  vacuum  reflectors,  that is, OR = 0, with  those of reference 12  is 
given  in  tables I and 11. Results  generally agree to  three  figures  for  slab  half- 
thicknesses A from 0.4 to 20. In table II, eigenvalues  calculated  in  the  thick-slab 
approximation a re   a l so  shown for  bare  slabs.  For  slabs  with  half-thicknesses A > 1, 
the  thick-slab  approximation  generally  agrees with  the  numerical  solution of the  exact 
eigenvalue  condition to three  figures.  This  agreement  can  be  seen  from  table 111 where 
such results are compared as oR departs  from  zero with OD = 0. From  the  bare- 
slab  results ( c r ~  = 0 )  of tables I, 11, and III, critical  slab  half-thicknesses  are  obtained 
from 50 by using  equations (122). These  values are compared  with  the  critical  slab 
half-thickness  results of Mitsis  (taken  from  ref. 2) in  figure 5 (open symbols).  Closed 
symbols  give  critical  sphere  quarter-diameters  obtained  from  equations (122) and cl 
whereas  Mitsis'   critical  sphere  results  are  taken  from  reference 22. The  agreement is 
good to  the  scale of the  figure.  For OR = 0, the  eigenvalues c0 and  have  also 
been  compared  directly  with  numerical  bounds  computed  by  Mullikin  (ref. 23) for  bare 
slabs  and  spheres  and  again  the  agreement is good. Critical  half-thicknesses  for  slabs 

TABLE I.- EIGENVALUES {cIl} FOR BARE  SLABS 

I Eigenvalues for - 

. I  A = l  T 
Presen 

0 

2 

0.703 
1 

3 
4 
5 

7 
6 

8 
9 
10 
11 

13 
12 

14 
15 
16 
17 
18 
19 

3eference  12 

0.705 

A = 5  I A = 10 

Reference 12 

0.993 
-971 
.935 
-883 
3 1 6  
.I27 
.621 
.493 
.340 
.I57 

T 
Present 

0.997 
.987 
.970 
.946 
.915 
.a77 
.831 
. I 77  
.I14 
.642 
.560 
.467 
.362 
.243 
.110 

A = 15 T 
3eference  12 

0.997 
.987 
.970 

.915 

.946 

.831 

.877 

.I14 

. I77 

.644 

.560 

.467 

.361 

.a43 

.I10 

Preseni 

0.998 
.992 
.983 
.969 
.952 
.930 
.904 
A74 
.840 
.a00 
.I56 
.IO7 
.653 
.593 
.526 

.373 

.453 

.286 

.190 

.084 

A = 20 
" 

t I  
" 

- 

Zeference 12 

0.998 
.992 
.983 
.969 
.951 
.930 
.905 
314  
.840 
.800 
.I56 

.653 

.IO7 

.593 

.526 

.453 

.373 

.286 

.190 

.084 
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TABLE 11.- EIGENVALUE To FOR THIN BARE SLABS 

Eigenvalues  determined by - 
~~ 

Slab 
thickness,  Thick-slab 

A Present ap roximation Bowden 
pes. i J W )  (eq. (36)) (ref. 12) 

1.0 
.8 

0.702 
.612 

0.703 I 0.705 

.6 
.615  .615 

.473 

.048  .043 ( * I  

.282 .282 .244  .4 
.2 

.483 .483 

*KO solutlon found for < > 0.001. 

TABLE IIL- EIGENVALUES 50 AND Cl FOR THIN REFLECTED SLABS 

Eigenvalues  for - 

A = 0.4 A = 0.7 I A = 1.0 

OR TO TO TO 

approximation 
Thick-slab  Present Present  Thick-slab  Present Thick-slab 

ap  roximation  solution  solution  ap  roximation  solution 
(eq. (J19)) Pes. ( J W )  I (es. (J6)) (es. (J6)) ?eq.*(J19)) (eq. (J6)) 

.656 .660 
.84 3 

I Eigenvalues for - I 
I A = 1.4 

Thick-slab 

.403 

Present 
solution 
(es. (J6)) 

0.132 
.247 
.402 

i I 0.808  0.808 

-836 

T 
Pl 

Thick-slab 
ap  roximation 
/&. (J19)) 
0.508 

-540 
.585 
.656 
(*I  

Present 
solution 
(es. (J6)) 

0.508 
.539 
.584 
.656 
(*I 

CO 
Thick-slab 

ap  roximation 
Pes. (~19)) 

0.885 
.a91 
.E98 
-909 
.930 

Present 
solution 
(es. (J6)) 

0.885 

*uR > TI (or 51 in branch  cut of v . 0 1) 

with infinite  reflectors  have  been  recently  computed by Kowalska  (ref. 24) for a number 
of combinations of cslab  and  Creflector.  Some  present  results 50 for OR # 0 Can 
be compared with the  critical  slab  half-thicknesses of reference 24. The  parameters 
a r e  given  in t e rms  of C0 and  the  present  input  quantities OR, OD, and A by equa- 
tions (122). Figure 6 gives a few present  cases  (circles)  for which cslab was close  to 
some of the  points  (diamonds) of reference 24; no attempt was made  to  compute  exactly 
these  points.  The  present  cases  for Cslab 1.11 a re   f rom A = 2 and  1.4  in  table III. 
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Critical slab half-thickness (ref. 2) 
Critical sphere quarter-diameter (ref. 22) I Mitsis 

0 Critical slab half-thickness 

(p Critical sphere quarter-diam-ter (ref. 12) 
a 0 and to scale of figure 

?resent and Bowden 

B 
0 

OO 

‘ s l a b  ( O r  ‘ sphere ) 

Figure 5.- Critical dimension of bare systems. 
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0 Mitsis ( r e f s .  2 and 22) 

0 Ko;Ialska ( r e f .  24) 

0 P r e s e n t  

S u p e r s c r i p t  i s  value  of   c  
s l a b  

1.01 
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0 
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0 1.01 
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‘ r e f l e c t o r  

Figure 6.- Cr i t i ca l   ha l f - th i ckness  f o r  f i n i t e  slabs with i n f i n i t e   r e f l e c t o r s .  

Sample  Reflected  Slab  Results 

The  remainder of the  results  have  been  computed  for  A = 5. For a bare  slab with 
A = 5, it can  be  seen  from  table I that  there  are  five  eigenvalues.  The  behavior of these 
eigenvalues  has  been  studied as oR departs  from  zero  for  several   values of oD. In 
figure 7, resu l t s   a re  given  for OD = 0. The  calculations  show  that  the  largest  eigen- 
value c0 is present up to aR = 0.9999. Apparently,  this  eigenvalue  remains up to 
OR = 1, which is only  obtained for c2 < 1. All  other  eigenvalues  disappear  into  the 
branch  cut of v01 at Cn = OR, labeled  with  an  asterisk, which corresponds  to a t ime- 
decaying  mode,  regardless of the  value of c2. An aster isk is used  in  figures 7 and 
9 to 11 to  indicate  the  points at which an  eigenvalue or pseudo-eigenvalue  coincides  with 
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Figure 7.- Dependence of eigenvalues fn on oR. oD = 0; A = 3 .  
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Figure 8.- Relative location on the real (-axis of the branch cuts of v h ,  
the eigenvalues f,, and the pseudo-eigenvalues for uR = 0.2 as read 
from figures 7 and 9 to ll. 
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the  branch  points of v01. Even  though  such  points  appear  to  have a discrete  eigenvalue 
type of time  dependence, it is felt that  they are properly  part of the  branch-cut  integral 
contribution.  Note that the branch  points of v01 are located at ( = -OD and 
( = -OD + oR and  that  the  limiting  form of the  condition  which  determines  whether  such 
points  are  eigenvalues (or pseudo-eigenvalues) no longer  depends  explicitly on UR o r  
Q. (See appendixes J and K.) The  theorems of Lehner (ref. 8) apply  for OR = 0 in 
figure 7. 

In  figure 8, the  manner  in which the vom branch  cuts  overlap  and  the  location of 
the  eigenvalues  and  pseudo-eigenvalues  for OR = 0.2 in  figures 7 and 9 to 11 is indicated. 

In  figure 9, results are presented  for OD = -0.65 + 0 . 5 0 ~ .  These  results  typify 
results  for -OD values  in  the  range  between  zero  and , where  the  notation (''1 cR=o . .  

means  bare-slab  eigenvalue,  which  depends  on  c2, 02, and a. The  open  and 

closed  circles  represent  eigenvalues as in  figure 7 whereas  the  half-closed  circles  are 
pseudo-eigenvalues  corresponding  to s < -omin = -al. Again  the  largest  eigenvalue (0 
appears  to  remain  provided  that  c2 > 1. Here, as in  the  next  two  figures,  results  for 
OR = 0 agree with the theorems of Hintz (ref. 9) which  apply  only  for c 1  = 0. Basically, 
his  result  is that  the  strip  Re(()  between 0 and -OD belongs  to  the  continuous  spec- 
trum  and  that  the bare-slab eigenvalues  lying  in  this  interval are not  eigenvalues of the 

3:- Eigenvalue  and  branch- 
p a i n t  same 

Lef t   end  of  branzh  ' Bare - s l ab   e igenva lue  

cuk  of "01 0 Ref lec t ed - s l ab   e igenva lue  
1.0 8 Reflected-slab  pseudo-  

e igenvalue  

CI R *8t 
e \  

.6 

. h  

. 2  

Right  end of branch 

- 

0 .l .2  . 3  .& .s .6 .7 .8 .9 1.0 

5 

Figure 9. - Dependence of eigenvalues Cn on uR. uD = -0.65 + 0 . 5 ~ ~ ;  A = 5. 
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Y -- 

slab  surrounded by purely  absorbing  media. He finds  that  there  are no eigenvalues if 
-(T > (‘O)DR=o , but  does not discuss  the  physical  significance. It is seen  from  equa- 

tion (119) that  for  such  cases, C0 < l/c2  and  corresponds  therefore  to a time-decaying 
mode. In other  words,  stationary  (critical) or time-increasing  modes  cannot  disappear 
into  the  continuous  spectrum as material  properties  are  varied. In fact, when OR # 0, 
such  modes  could not disappear  into  the  branch  cut of vol either. In figure 10, results 
a r e  given  for -(TI) + DR = 1 which, it may be remembered,  implies c2 < 1. For  this 
case, all the  bare-slab  eigenvalues  lie  in  the  continuous  spectrum of reference  9 when 
OR = 0. In both figures  9  and  10, s = -amin corresponds  to < = -OD. Figure 11 shows 
the  behavior of the  eigenvalues  for OD = 1 and it is similar  to  that of figure 7.  For 
( T ~  = 0, the  continuous  spectrum of reference 9 lies  in  the  strip -aD = -1 < Re(<) < 0. 
Here s = -omin corresponds  to 5 = 0. 

x- Eigenvalue  an3  branch-  
p o i n t  same 

@ Bare-s lab   e igenvalue  

8 Reflected-slab  pseudo-  
1.0 L e f t   e n d  or’ branch e igenvalue  

.8 

Right  end of branch- 
OR .6 c u t  of vol 

.h 

.2 

Figure 10. - Dependence  of eigenvalues $, on UR. OD = aR - 1; A = 5.  
Note t h a t  c2 < 1 for t h i s   f i g u r e .  

50 



2 .0  

1.6 

1.2 

0 R 

.0 

.4 

0 

$5 Eigenvalue  and  branch- 
p o i n t  same 

Bare-s lab  e igenvalue 

0 Ref lec ted-s lab   e igenvalue  

/ -Left   end of branch   cu t  of vol 

I I 

0 

0 

0 

0 

0 0 

0 0 

0 0 

0 0 

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

-1.0 -.0 -.6 - .).I -. 2 0 .2 .. 1 .6 .0 1.0 

Figure 11.- Dependence of eigenvalues Cn on uR. u,, = 1; A = 5. 



Summary of Numerical  Results 

All  numerical  results  indicate  that real time  eigenvalues (en> for  material 
reflectors  are  finite  in  number  and  tend  to  eigenvalues  previously  obtained  for a vacuum 
as UR - 0, as do the  pseudo-eigenvalues  for s < -anlin. If the  set  (en} is empty,  the 
neutron  density is necessarily  decaying  in  time.  Conversely, if the  neutron  density is 
stationary  or  increasing  in  time,  the set (en} is not  empty. One also  expects  that 
when  c2 > 1, a critical  thickness  should  exist;  that is, the  largest  eigenvalue eo must 
be  present  for  large enough slab  thicknesses  for  the  given  c2.  This  effect  can  be  seen 
from  table I. For  example, if -OD = 0.8, the  eigenvalue eo for A = 1 is not present, 
whereas  that  for  A = 5  would  be,  and represents a mode  whose  amplitude  increases 
exponentially  with  time  for  c2 > 1/0.975.  That  for  A = 20 needs  only  c2 > 1/0.998 in 
order  to  represent a time-increasing  mode. 

As pointed  out  at  the  beginning of this  section,  some  speculations  concerning  the 
behavior of {en} for  reflected  slabs as a function of the  slab  half-thickness a can  be 
made,  that is, if cm  and um a r e  known what  can  be  said  about {en} as a function 
of a. The  following  conclusions are  based on  the  observation  that if eo at uR = 0 
lies to  the  right of -aD, it appears  to  remain  to  the  right of -OD + OR as OR 
increases  until -OD + uR = 1. (See  figs. 7 and 9.) The  dependence of (po)uR=o on 

slab  half-thickness is given  in  tables I to III and  many  more  points are given In refer-  
ence 12. First, if -UD + uR 2 1 (this  inequality  implies  c2 < 1), the set {CJ is 
empty  for all a. However, there  may  be  pseudo-eigenvalues if  -OD > 0. Next, if 
-OD + uR < 1, then  two cases arise, depending on the  value of UD 

(1) When -uD > 0, then  regardless of the  value of c2,  one  can  find 
an a* such  that a < a*  implies  that  the set (Cn> is empty,  whereas 
a > a*  implies  that  the set (e2 is not  empty.  The  number a* is 
obtained  from  the  bare-slab  result (Co), -o as 

R- 

(2) When -uD 2 0, the set {en} is never  empty.  Thus,  given  cm, 
um, a, and  the  bare-slab  eigenvalues  corresponding  to  c2, 02, and a, one 
can  say  whether  the set {en> is empty.  Furthermore,  the  number of eigen- 
values {en} will  not exceed the  number of bare-slab  eigenvalues 

which are greater  than -OD. Finally,  the  number of real reflected-slab 
eigenvalues  and  pseudo-eigenvalues  does  not  exceed  the  number of bare-slab 
eigenvalues. 

((QOR=0) 
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COMPARISON WITH OTHER ANALYTICAL SOLUTIONS 

General  Form 

It  has  been  shown by using  Case's  method  that  the  solution of the  initial-value  prob- 
lem of monoenergetic  neutrons  migrating  in a finite  slab  properties  c2,az)  with  infinite 
reflectors  (properties  c1,ul)  can  be  written  in  the  form 

( 

S=Sn 
- 11 

In  this  equation, t is the real time  multiplied  by  the  constant  neutron  speed,  omin is 
the  minimum of q and u2, and  each  function is the  sum of its definite  parity 
par ts  +*. Some t e rms  of the  solution (124) will  not  be  present if -omin# -01(1 - c1) {s,. 
That is, if -al(l-  c$ < -omin, then  the  branch-cut  integral  does not appear.  Likewise, 
if all sn < -01 1 - c1 , there are no residue  terms.  These  discrete  eigenvalue  terms are 
characteristic of a finite  slab  whereas  the  branch-cut  integral  term is typical of a semi- 
infinite  medium.  The  term \Eu(x,p,t) describes  the  behavior of neutrons from the  ini- 
tial distribution  f(x,p)  which  have  not suffered a scattering  collision  and  its  definite 
parity  parts are given  in  equations (104) to (107). The  discrete  eigenvalue  terms  in 
equation (124) are given  by  equation (117) whereas  the  integrand of the  branch-cut  inte- 
gral  is given  by  equations (115) to (116). The  definite  parity  parts of the last integrand 
are given  by  equation (103) and  equations (70) to  (73). The  eigenvalues (sn,  can be 
computed as was  demonstrated  in  the  previous  section;  thus, all t e rms   i n  equation (124) 
can  be  calculated. 

0 

Special  Cases 

In all special cases of the  present  problem  which  have  been  solved  using  the  Lehner- 
Wing  technique  (refs.  6  to 9), c1 = 0. In  these  cases,  there is no  branch  cut  due  to 
vol(s); therefore,  the  branch-cut  integral is not  present  in  equation (124). It was shown 
that as c1 - 0, the  eigenvalues en} which are greater  than  -urnin  approach  those  for 
a bare  slab as do the  pseudo-eigenvalues  for s < -omin. The  solution +* has  the 
proper  behavior as c1 - 0 since  those  terms of equations (65) and (66) which  appear  to 
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blow up in  such a limit  actually  cancel when the  contour C' is collapsed  on  to  the por- 
tion of the  branch  cut of S2m(z1,s), 0 2 z' 5 1. When the  uncollided  term is combined 
with  the last integral,  it is then  seen  that  the  solution (124) and  the  eigenvalues {sn} 
have  the  behavior  required  by  the  theorems of Lehner  (ref. 8) and  Hintz (ref. 9). The 
present  problem  reduces  to  those  considered  by  Lehner  and  Hintz,  respectively, when 

C l  = 0 

01 = 02 
(12  5a) 

and 

c1 = 0 

01 f 02 I (125b) 

In order  to  describe  the  same  physical  problem  in  the  slab as that  solved by Lehner 
and Wing (refs. 6  and 7), one  must not only  have 

c1 = o  

01 = 0 1 
but  also 

In  other  words,  neutrons  from  the  initial  distribution  outside  the  slab  cannot  impinge on 
the  slab  faces at t imes t > 0. Lehner  and Wing solved  the  time-dependent  problem  with 
boundary  conditions: 

Q(*a,p,t) = 0 

Restrictions (126) and (127) in  the  present  solution  make I~&L,s)  and  therefore 
AZ*(p,s) depend  only  on  slab  properties.  Then,  in  looking  for  solutions  inside  the  slab 
(1x1 < a), the  inversion  contour  along  Re(s) = - ~ ~ i ~  can  be  deformed  back  to 
Re(s) = -02, and  one  picks  up a residue  contribution  from  any  pseudo-ei, menvalue in  the 
region  and  thus  obtains  the  Lehner-Wing  results.  That is, the  solution  has  the  proper 
form  and all bare-slab  eigenvalues are recovered. 
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The  analogous  problem  for c1 # 0 in  which  the  inversion  contour  can  be  deformed 
to  the left of Re(s) = -umin  for 1x1 < a is obtained  when u2 > ol and  fl(x,,u) E 0; 
that is, if 

f(x,,u) = 0 and 

then all t e rms   i n  I&L,s) which  contain s + 01 factors  in  the  exponentials are identi- 
cally  zero  and  this  allows  the  contour  along  Re(s) = -urnin  to be deformed  back  to 
Re(s) = -02 when 1x1 < a. Such a deformation is not  possible  for 1x1 > a; for this  range 
of x, one  must  stop at Re(s) = -omin = -01. If there are pseudo-eigenvalues  in 
-u2 < Re(s) < -01 = -umin (see, for  example,  fig. 9), they  will  appear  in  the  solution  for 
1x1 < a as residue  terms  which  have  the  exponential  time  dependence.  They are however 
not  eigenvalues  for  the  reflected slab since  such  terms do not appear  for 1x1 > a. 
Erdmann (refs. 15 and 16) solved  the  time-dependent  problem  for  two  semi-infinite  media 
where  an  isotropic  pulse of neutrons  was  introduced at the  interface,  and  found  that  the 
inversion  contour for x E medium m could be deformed  to the left as far as 
Re(s) = -om. In  the  present  problem,  such  deformations  can  be  made  only  when  condi- 
tions (129) are satisfied. It appears  that  the  contour  Re(s) = -omin cannot  be  deformed 
to  the left of Re(s) = -u2, since  the  implicit  equation  which  determines  A~*(,u,s)  (see 
eq. (13)) requires  Re(s) 2 -u2. Apparently,  Re(s) = -02 is the  edge of a continuous 
spectrum  in all cases for  the reflected slab. 

CONCLUDING REMARKS 

The  present  solution has been  shown  to  have  the  required  properties  in all special 
cases which  have  been  solved  previously by others  using  the  Lehner-Wing  technique. 
However,  in all these  rigorous  solutions,  there  was no scattering  outside  the  slab.  It 
was seen  that  with  infinite  reflectors on the slab and  neutrons  anywhere  outside  the slab 
initially, it is possible  for  some  neutrons  which  have  spent  their  entire  history  in  the 
reflector to impinge  on  the slab faces at later times. Such neutrons  have a collision  rate 
which is characteristic of reflector  properties  and  this  condition,  in  general,  places a 
restriction  on how the  inversion  contour  can  be  deformed  in  the  transform  plane. Two 
cases  have  been  illustrated  in which a further  deformation is possible  for  the  solution 
inside  the slab by eliminating  neutrons  outside  the slab initially,  which  can later impinge 
on the slab faces. This condition is equivalent  to a further  restriction  on  the  Hilbert 
space which has  been  used  in  some of the  above-mentioned  rigorous  solutions.  The  exact 
eigenvalue  condition  has  been  obtained,  and real time  eigenvalues  have  been  calculated 
for a number of combinations of material  parameters.  The  largest  eigenvalues  have 
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been  shown  to  agree  with  the  criticality  results of others.  Calculations  also show that 
eigenvalues  can  disappear  into  the  branch  cut  or  continuum as material  properties are 
varied  and it was pointed  out  that all such  disappearing  eigenvalues  correspond  to  expo- 
nentially  time-decaying  modes  since  the  number of secondary  neutrons  per  collision  in 
the  reflector  was  taken  to  be  less  than  unity. It is expected (but has not been  shown)  that 
there is no drastic change  in  the  shape of the  solution when this  situation  occurs;  one of 
the  integrals  in  it  probably  has  resonance-like  terms  caused  perhaps by zeros  of the 
eigenvalue  condition  on  the  next  Riemann  sheet.  The  assumption  that  the  eigenvalues  are 
real for  arbitrary  slab  half-thicknesses  has  been  made.  This  assumption  has  been  shown 
to  be true  for  thick  slabs  in  this  report  and it has  been  proved  rigorously by others for the 
above-mentioned  special  cases. On the  basis of sample  calculations, it is concluded  that 
if one is given  the  material  properties as well as the  bare-slab  eigenvalues  corresponding 
to  the  slab  properties,  then  he  can  conclude  whether  there are eigenvalues  and  the  maxi- 
mum  number of them. 

Perhaps  the  present  results  can  serve as a guide for a rigorous  Lehner-Wing  type 
analysis of the  reflected-slab  problem. If the  eigenvalues  are all real,  one  might  be  able 
to  prove it in  such  an  analysis of the  present  problem. 

Langley  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Hampton, Va., November 12, 1970. 
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APPENDIX  A 

SUMMARY OF ELEMENTARY SOLUTION PROPERTIES 

In this  appendix,  the  elementary  solution  properties  derived by others  (refs. 12 to 
to 16), following  the lead of Case  (refs. 2 and ll), are summarized.  These  solutions are 
obtained  from  equations (21) to (23) and are given by equations (24) to (26). Such solutions 
a r e  complete  and  orthogonal  in  the  following  sense. A function, say g ( p ) ,  satisfying  very 
weak  restrictions  (see, for example,  appendix G of ref. 2) for  -1 5 a! 2 p 2 /3 2 1 can be 
expanded as follows: 

(1) Full  range (a!= -1; p = 1): 

where  the  notation Sm(S) was  defined  by  equation (30). The  orthogonality  relations  used 
to  determine  the  expansion  coefficients  in  equation (Al) are 

and  for s E Snli 

where 



APPENDIX  A - Continued 

and 

(2) Half range (a! = 0; p = 1): 

Here  the  orthogonality  relations  for s E S,i are 

where 
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APPENDIX  A - Continued 

and 

with  Xm(z,s)  given by 

(0 2 1-1 2 1) (A7a) 

Several  other  equivalent  expressions for X,, generally referred to  as the  X-identities, 
are given  by 

The  orthogonality  relations  for s E Sme for the  expansion (A4) are 

where 

(0 5 p 5 1) (A6b) 
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APPENDIX  A - Concluded 

with  Xom(z,s)  given by 

and  the  identities 

(0 2 1-1 2 1) (A7b) 

These  half-range  orthogonality  relations  and  identities are obtained  by  extending  the 
time-independent  results of KuiiCer, McCormick,  and  Summerfield  (ref. 20). 

A result,  due  to  KuZer  and  Zweifel (ref. 14),  which is needed  to  continue  solutions 
analytically  follows  from  equations (A9a) and (A9b). For a fixed  value of z, X,(z,s) 
does not  become  Xom(z,s) as s c rosses  C,. However, it can  be  shown  from  the 
first line  in  equations (A9a) and (A9b) that 

By use of reference 14, the  function  Xom(z,s) is redefined  to  be  continuous as s - C, 
by  equation (60). Such a function of the two  complex  variables z and s has  the  fol- 
lowing  analytical  properties (ref. 14): 

Fixed s: no singularity  in  z-plane  cut  along  (0,l);  one  simple  zero at z = vom(s), 
Re vOm) Z 0, only if s E Smi 

zero at s = -om + cmomz  tanh-I 1 for Re(z) > 0 

( 
Fixed  z: no singularity  in  the  s-plane  cut  along (-Om, -onI(l - cm)); one  simple 

Z 

Note here  that  Xom(z,s) is a nonvanishing  analytic  function of z and s for  Re(z) < 0 
and s 4 (-om, -vm(1 - cm)), the  branch  cut of vom(s). 
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APPENDIX  B 

DERIVATION O F  +mp*(x,p,s) 

In this  appendix,  explicit  forms of ~ ) ~ ~ ~ * ( x , p , s )  are obtained.  Consider,  for 
medium  m,  the  function g, x,p;xo ( ) as 

The  expansion  coefficients  in  equation  (Bl) are to  be  determined so  that  gm(X,p*x 0) 
satisfies equations (42) and (43); that is, on  putting  the  expansion (B1) into  equation (431, 
in  the  limit  x - x0 

This  equation is a full-range  expansion (see eq.  (Al)) of the  function f m  
use of the  orthogonality  relations (A2) gives  the  coefficients as 

and, if s E S,i 
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APPENDIX B - Continued 

and 

However,  one  needs  expansion  coefficients  for f,, %,p p. It follows  from  equation 
tions (B3) that 

( I/ 

and, if s E Smi, 

and 

are  the  expansion  coefficients of f,,(xO,p)/p; that is, equations (47). 

In order  to  construct qrnp*(x,p,s) according  to  equation  (41),  note  that  for m = 2 

Upon using  equation (BI), one  obtains ~2p(x,p,s) as 
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APPENDIX B - Continued 

That  equation (B7) is a solution of equation (18) for  m = 2 can be seen by direct  substi- 
tution as follows.  The ~ m v ( x , ~ L , s )  in  equation (B7) a r e  solutions of equation (21), the 
homogeneous  equation  corresponding  to  equation (18). However,  their  coefficients  in 
equation (B7) a r e  functions of x so that some  additional  terms  are  obtained  from  the 
- operation.  Thus, a 
ax 

which is an  identity  since  according  to  equation (47), the C2* are  the  full-range  expan- 
sion  coefficients of f2*(x,p)/p. 

To get  +lp(x,p,s)  according  to  equation (41), first  note that 

(. . .) dxo = j ~ (. . .) dx() + j (. . .) cbro 
-Co a 
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APPENDIX B - Continued 

By following  the same  procedure as before,  one  gets  +lP*(x,p,s) as 

and 
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APPENDIX B - Concluded 

Again, it is easily  shown  by direct substitution  that  equations  (BlOa)  and  (Blob) are solu- 
tions of equation (18) for m = 1. By introducing  the F functions of equation (46) and 
allowing x to  take on negative  and  positive  values,  it  follows  that  equations (B7), (BlOa), 
and  (Blob)  can  be  written as equations (44) and (45). 

Also note  here  that  the Cm, coefficients of equations (B4) have  the  property 

so that it then  follows  from  equations (46) that 
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APPENDIX C 

TWO-MEDIA FULL-RANGE EXPANSIONS AND 

ORTHOGONALITY RELATIONS 

In  this  appendix,  some  results of references  15, 16, and 20 are summarized  and 
extended.  In  reference  15, it is shown  that a function,  for  example,  h(p),  satisfying  very 
weak  restrictions  for p on the  interval -1 5 p 5 1 can  be  expanded as 

This  equation is a two-media  full-range  expansion of the  function  h(p)  and  the  expansion 
coefficients  in it can  be  determined by using  orthogonality  relations which are easily 
determined  from  the  time-independent  ones of reference 20. For  61(s) = 62(s) = 1, that 
is, s E Sl i  n S2i, these  relations are 

Equations  continued  on  next  page 
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APPENDIX  C - Continued 

where 

All  remaining  quantities  have  been  defined  in  appendix A. 

Rather  than  write  out  explicit  orthogonality  relations  for  the  other  three  regions of 
the  transform  plane  in  the  present  notation,  one  introduces a function  which is continuous 
as s - Cm. From  the  results of reference 14 quoted  in  appendix A, it is seen  that  one 
such  function is given  by  equation (59) and can be  written by using  equation (60) as 
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In t e r m s  of this  function, W ( v )  can  be  written as 

The  function x(z,s) is expressed as 

In  order  to  obtain a two-media  expansion  in  the  form of equation  (Cl),  one  generally  has 
to  switch  some  continuum  solutions  in  one  medium  to  those  in  the  other.  From  the 
explicit  form of qm,(pys) (eqs.  (24)), it follows  that 

where 
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It is seen  that when the  two  media are the  same, k = 0. This  quantity  can  be  expressed 
in a number of different  ways,  and  several  that  will  be  used  are 

I C p l x 2 ( ~ , s )  - C2U2Al(Y,S) 

k = c l o p 2  @Ol,S) (C8) 

-c2u2fi1(v024 

The  orthogonality  relations  (eqs. (C2)) can now be  written  in  terms of Xo(z,s) and 
k as - 

Equations  continued  on  next  page 
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These  expressions  appear  to  be  more  complicated  than  the  corresponding  ones  in  equa- 
tions (C2);  however,  the  orthogonality  relations  needed  for all regions of the  transform 
plane  are  given by  equations (C9). That is, for s E Sle n Szi, the  proper  orthogonality 
relations are the first, third,  sixth,  and  eighth  equations of equations (C9) with Xo(z,s) 
given  by  equation (C4). Note here  that  Xo(z,s)  always  appears  in  equations (C9) with 
Re(z) < 0. It follows  then  from  appendix  A  that  for  Re(z) < 0, Xo(z,s) is a nonvanishing 
analytic  function of both z and s except  for  the  branch  cuts  in  the  s-plane due to 
VOl(S) and q&). 
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APPENDIX  D 

THE TWO-MEDIA FULL-RANGE EXPANSION  FOR THIS PROBLEM 

In this  appendix, it is shown  that  application of the  continuity  condition  (eq. (20)) 
results  in a two-media  full-range  expansion of the  type  discussed  in  appendix C. For 
x = a, one  readily  obtains  from  equations (31) and (20)  upon using  the  explicit  forms of 

+mc* and + mP* given  by  equations  (32), (39), (44), and (45) that 

r 1 

,1 r 1 

It  was  in& 

%”02(~) ,  
se t  of basi 

.cated  in  appendix C that  according  to  Erdmann (ref. 15),  the  functions 9 (p), 

qlv(pys) (0 2 v 2 1) and q 2 ~ ( p , s )  (-1 2 I/ 2 0) form a complete  orthogonal 
”0 1 

.s functions  for  the  expansion of h(p) (-1 2 p 2 1) for s E S l i  n S2i.  (See 
eq.  (Cl).)  However,  equation  (Dl)  also  contains  terms  in  which q12~(p,s) (0 2 v 2 1) 
and qlV(p,s) (-1 5 v S 0) appear.  These  continuum  solutions  must  be  replaced  by 
corresponding  continuum  solutions  for  the  other  media.  One  uses  the  relationship (C7) 
to do this;  that is, 
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where 

When explicit  forms of the  elementary  solutions  and  equations (D2) and (D3) 
are used  in  equation  (Dl),  one  obtains  the  two-media  full-range  expansion 
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The  orthogonality  relations  (eqs. (C9)) can  be  used  on  the  expansion (D4) to  obtain  equa- 
tions which  determine  the  remaining unknown coefficients  implicitly.  However, it is 
convenient  to  introduce first the Em, coefficients  given by equations (50). One  then  has, 
after some  algebraic  manipulation,  equations (51) to (48). 
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APPENDIX  E 

CONTINUATION TO  THE COMPLEX PLANE 

In  this  appendix,  the  way  in  which  equations (50) to (58) a r e  extended  to  the  complex 
plane ,u - z with s considered a parameter is outlined.  As  shown  in  reference 21, 
functions  such as those  introduced  in  equations (50) are extendable.  The  particular 
grouping of terms  in  equations (51) to (58) indicates  some  integrals  and  residues which 
go together. 

The first functions  to  be  considered  are  the F,*(x,w,s) functions  given  by  equa- 
tions (46). In  equations (55) to (58), these  functions  appear  with  Re(w) > 0 so one  con- 
siders  the  functions  Lmf(x,v,s)  given by  equation  (69). When the  explicit  expressions 
of equations (46) and (47) are used,  one  can see that  for fm,(xo,p)  extendable p - z 
without  singularities  in  the  finite  z-plane,  then Lm*(X,V,S) can  be  extended  to 
Lm*(x,z,s)  given by equations (67) and (68). As z - v E ( O , l ) ,  it  can  be  seen  that  the 
limiting  values of Lmf,  namely  Lmf(x,v,s)  and L,;(x,v,s), are identical.  Thus, 
Lm*  does not contain  the  branch  cut of 52,(z,s) as one  might be led  to  expect  from 
equation  (67). There  appear  to  be no other  singularities of Lm*  in  the  finite  z-plane, 

+ 

Re(s) > om. It follows  from  equxtion (67) that 

In  order  to  extend  the  functions Imf(v) to  the  complex  z-plane,  one  needs  the 
identity 

which  can  be  verified  directly. On using  this  identity, one  finds  that Im*(v), given  by 
equations (55) and (57), can  be  written,  respectively, as equations (65) and (66). The 
restriction  Re(s) > -urnin  on  these  equations  comes  from  the  fact  that Lmi for both 
m = 1 and m = 2  occur  in  each Im5 More  will  be  said  about  this  restriction  later. 
The  contours C' are given  in figure 3. By letting  z = vo2 in  equation (65) and 
z = vo l  in  equation  (66), it can  be  seen  that 
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12*@02JS) = J2*(v02) 

11*("019s) = J l* (vOl )  i 
APPENDIX  E - Concluded 

Thus,  the  inhomogeneous t e r m s  of equations (51) to (54) are  seen  to  be  extendable and 
related as shown  in  equations  (E3).  For z - v01 in 12* (eq. (65)) and  z - "02 in 
Ilrt (eq.  (66)),  these  functions  might  seem  to  be  singular.  However, upon examining  the 
residues it is seen  that  this is not the  case.  Thus,  the  Im*(z,s)  appear  to  be  analytic 
in  the  finite  z-plane,  Re(z) > 0 and  Re(s) > -omin. 

In  equation  (51),  one now lets v - z and, for  Re(s) > -omin and  Re(z) > 0 in 
the  finite  z-plane,  finds  that E ~ & , s )  is given  by  the  inhomogeneous t e rm I~*(z), a 
te rm involving a2* if s E S2i  and  an  integral  over  Ea,(p,s) (0 5 p 5 1). A  singu- 
larity  occurs  in  the  integrand when either S$(p,s) or  S$(p,s) vanishes  and  this 
condition occurs  for s E C2. However, for  this  case, it is seen  that  one  obtains  from 
equations (51) and (52) t h a t   E z * ( v ~ ~ , s )  is related  to a2*.  It appears  that  E~*(z,s) is 
analytic  in  the  finite  z-plane,  Re(z) > 0, Re(s) > -omin and  can  be  written as equa- 
tion (63). By following  the  same  procedure with  equation  (52),  one  obtains an  equation 
which is easily  seen  to be equation (63) evaluated at z = vO2; that is, E2*(vO2,s) and 
a2* are   re la ted as 

In a similar  manner,  from  equations (53) and (54) with v - z  and  from  using  equa- 
tion  (E4),  one  obtains  equation (64) and  again it follows  that El,t(VO1,s) and a1* a r e  
related as 

It also  appears  that  El*(z,s) is analytic  in  the  finite  z-plane,  Re(z) > 0 and 
Re(s) > -omin. 

The  solutions I ) ~ ~ *  and $mp* can now be written  in  terms of the E,, as 
shown in  equations (70) to (73). 
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APPENDIX F 

INVESTIGATION OF THE ASSOCIATED EIGENVALUE PROBLEM 

In  this  appendix,  the  associated  eigenvalue  problem,  that is, the  problem  for  which 
f(x,p) E 0, is considered.  The  inhomogeneous  terms Im* (given by eqs. (65) to (67)) 
can  be  seen  to  be  identically  zero when f(x,p) is zero  everywhere.  Solutions  for 
Im* = 0 are denoted  with a bar,  that is, Fm*. The unknown expansion  coefficients 
for  the  associated  eigenvalue  problem  Em* are given  by  equations (63) and (64) with 
I,, = 0. It is seen  from  such  equations  that Em* can  be  determined  only  to  within  an 
arbitrary  factor independent of z and  that  depends  on E2*. Furthermore,  the 
original  normal-mode  expansion  coefficients  for  the  eigenvalue  problem  are  given by 

- 

- - 
Em*(pys) (0 2 P 5 1, m = 1y2)y ~l*(vO1ys) (. E sli), and E ~ * ( V O ~ , S )  (. E s2i). 

- 

Therefore,  one  must  examine  solutions of such  equations as a function of the  transform 
variable s for z - p with  the  contour C' collapsed  onto  the  branch  cut  (0,l)  due 
to S22(zr,s), and  for  z = vom when s E Smi.  This  procedure is followed  for all s in 
some  right-half  s-plane  and it is convenient  to  divide  the  plane  into  three  regions: 
s E Sze, s E Szi, and s E C2. 

When s E Sae, S22(z',s) does  not  vanish  within  C' so that  equation (63) with 
I2* = 0 can  be  written as 

where 

When s E S Z ~ ,  S22(z1,s) vanishes  inside  C' but  not  on  the real interval  (0,l). 
As C' is collapsed  on  to ( O , l ) ,  a residue  term  appears so that  equation (63) with 
I;z* = 0 takes  the  form 
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for z = ,u where K(p,v) is given by equation (F2). However,  equation (63) with 12* = 0 
must  also  hold at z = v02 and  this  requirement  gives  an  additional  constraint on solu- 
tions of equation (F3), namely, 

When s E C2, the  curve  separating S2i and  S2ey CZz(v,s) Q i ( v , s )  vanishes  for 
some v on the  interval (0,l); that is, "02 is real  and  l ies on (0,l). By setting 
vO2 = q, one  can  put  equation (63) with 12, = 0 in  the  form 

(s E C2, 0 S ,u,q 5 1) (F5) 

Note that  this  equation would be  obtained  from  either  equation (Fl) o r  equation (F3) for 
s - C2 from s E S2e or  s E Sai,  respectively. 

For arbitrary  complex  values of s, the  kernel K(,u,v) which appears  in  equa- 
tions (Fl) and (F3) is not symmetric  since 

where  the  asterisk  denotes  complex  conjugation.  Note,  however,  that when Im(s) = 0, 
the unknown functions Ez,(p,s) can  be  redefined so  that a symmetric  kernel is obtained. 
Solutions of equations (Fl) and 
the  quantity B2(s) given by 

(F3) depend on the  behavior of K(p,v) generally  through 

(F7) 
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To study B2, one  introduces  the  nondimensional  parameters <, OR, oD, and  A  given 
by  equation (118) with < = a + ip. Note  that a, p, uR, OD, and A are real whereas 
OR and A are nonnegative.  In t e rms  of these  quantities,  one  has 

2 
To make  estimates of the  function  IXo(-p,s)l , one uses  an  integral  representation 

of the  single-medium  X-function  given  in  reference  14,  namely, 

Upon letting z f  = iy  and  using Ci2,(z',s) = S~,(-Z',S), one sees that  equation  (F9) 
becomes 

which is real   for  s real. In t e r m s  of the  quantities of equation (118), one  finds 
. 

where 
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It  follows  from  equation (F12) that 0 6 g(y) 6 1 fo r  0 6 y 6 ~0 and  that it is a monotonic 
increasing  function of y on this  interval.  Furthermore,  since 

the  following  bounds  (perhaps  rather  loose) a r e  obtained  for 

for CY > max(1, -OD + OR), and 

for  a! < max(1, -OD + crR) and p # 0. Note that  in  the  <-plane,  the  points < = 1 and 
< = -oD + oR are  the  right  ends of the  branch  cuts of v02 and "01, respectively,  and 
those  cuts  lie on the  real  <-axis. The  left  ends a r e  at < = 0 and < = -OD, respectively. 

a,f(v,s) 
The  functions I C2O2 I are easily found to be 

It was pointed out in  the  text  that  the  curve C2 (fig. 2) is given by 



APPENDIX F - Continued 

The  parametric  form of this  equation is 

(0 6 v 6 1) 

(0 6 v 6 1) i (FIB) 

a&, s) 
2 

It is seen  from  equation  (F16)  that I c2u2 1 are the  squares of the  distance  (in  the 

(-plane)  from  the  point (a!,p) to  the  points ' (a!'(v), Tp'(v)), respectively, which lie on  the 
curve C2. Since  these  functions  appear  in  the  denominator of IK(p,v)l , the  inte- 
gral  (F7)  will not be  bounded when a! and p are related as in  equation (F17). One 
defines D,in(cr,/3) as the  minimum  distance  from  the  point (a,@) to  the  curve C2 for 
0 2 v 6 1; that is, 

2 

(0 6 u 6 1) (F19) 

and Dmin(a!,P) # 0 for  (a!,@) d C2. Therefore,  from  equations  (F16)  and  (F19), 

(0 2 v 6 1) (F20) 

Analytical  bounds  for  this  function are not as easy  to  determine.  For p = 0, 

ai( v, S )  = ( v, sg * and 

where g(k,v) has  been  investigated  and  tabulated by Case, De  Hoffmann, and  Placzek 
(ref. 25). They  show  that g(k,v)I occurs at v = 0 for Q! < n2/8 whereas  for 

a! > n2/8 it occurs  for v between 0 and 1. For a! very  large,  they  have 
g,, - 4a2/n2.  The  present  geometric  interpretation  (ref. 26) is consistent with all 
these  characteristics.  The  radius of curvature of the  curve C2 given  by  equation  (F17) 
is n2/8 at (a!',@) = (0,O). For Q'  very  large, p' - a/2;  thus,  the  minimum  squared 
distance  from (a!,O) to  (a!',pT) approaches n2/4, in  agreement  with  equation  (F21) 
and gmax - 4a2/7r2. 

max 
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Note that  the  exponential  factor e -  4aAlv in  equation (F8) requires  Q > 0 in 
order  for B2(a,p) to be  bounded since both I, and A a r e  nonnegative. On using 
estimates  F(14),  (F15),  and  (F20),  one  obtains  from  equation  (F7) a bound for B2(a,p) 
which is denoted as Brnd(a,/3): 

It can  be  seen  that B m z  depends not only on a! and p but also  on  the  nondimen- 
sional  material  parameters oD and oR as well as the slab thickness  parameter A. 

The  estimate  (F22)  for B m d  is not  bounded for  the  following  regions  in  the  s-plane: 

Reis) < -o2(a < 0) 

s E c 2  

s E Branch  cuts of vol(s) u vO2(s) i 
These  regions  must  be  handled  separately.  Even  for  the  general  case,  where s does 
not  belong to any of the  regions  (F23), it appears  difficult  to  say  whether  the  eigenvalue 
problem  has  nontrivial  solutions. One suspects  that it has  only  trivial  solutions  for  such 
regions  since  that is the  result which has  been found for  certain  special   cases by others. 
Lehner  and Wing (refs. 6 and 7) have  shown  this  result  for  the  bare slab, whereas  Lehner 
(ref. 8) and  Hintz  (ref. 9) have  obtained  this  result  for  the slab surrounded by pure 
absorbers. One shows  that  this  result is also  obtained  for  the  special  case A - 00, that 
is, a thick slab, as follows. 

Since  the  slab-thickness  parameter A appears only  in  the  exponential  term of 
equation  (F22), it is seen  that   Bmd(a,p)  can  be  made as small  as one  likes as A - co 

if s does not belong  to  any of the  regions  given  in  regions  (F23). F o r   l B m ~ ( Q , ~ ) l  < 1, 
the Neumann se r i e s  solution of the  inhomogeneous  integral (eq. (F3))  converges  to a 
unique  solution. (See ref. 27, for  example.)  Fredholm's  alternative  theorem (ref. 27) 
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then  guarantees  that  the  corresponding  homogeneous  equation,  namely,  equation (Fl), has 
only  the  trivial  solution.  Thus,  for s E Sae, the  eigenvalue  problem  has  only  the  trivial 
solution as A - 03. When s E Szi, the unique  Neumann se r i e s  solution of equation  (F3) 
must  satisfy  the  additional  constraint (eq. (F4)). By using  the  condition  S22(v~2,s) = 0, 
one  obtains 

where 

Now since  Re vO2)t 0, one  has ( 

- tan- 1 

I 

Therefore,  the Neumann se r i e s  solution is seen  to  converge  to  zero as A - 03 when 
Re(vOZ) f 0. Note that  Re vO2) = 0 is the  branch  cut of v02(s) which is one of the 
regions  given by region  (F23)  which  must  be  considered  separately. When s E C2, 
vO2 = 77, 0 2 q 2 1 so that p2(s) of equation  (F25)  becomes 

( 

and p = 1 occurs only at s = -a2 (that is, (cr,p) = (0,O)). One uses  equation  (F27)  in 
equation (F5) and, on taking  the  limit A - 03, finds  that Ez*(p,s) - 0 for s E C2, 
s f -9. 

Summarizing  the  results  then  for A - 03 indicates  that  the  eigenvalue  problem 
has only the  trivial  solution  for  Re(s) > -9 unless s belongs  to  either  the  branch  cut 
of vol(s) o r  v02(s). In order  to  determine what  happens on these  cuts,  one  must  write 
equations (63) and (64) with Im* = 0 in   terms of the X,(-2,s) functions  rather  than  in 
t e rms  of the X O ( - Z , S )  function. This  will  be done in  appendix G. When A is not 
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large,  others (refs. 6 to 9) have  shown for  special   cases of the  present  problem that if 
the  eigenvalue  problem  has  nontrivial  discrete  solutions,  such  conditions  occur on the 
real s-axis. For  the  bare slab, it was shown in  references 12  and  13  that  these  solutions 
lie on the  branch  cut of vg(s). In view of these  results, it is assumed  that  the  eigen- 
value  problem  has  nontrivial  solutions  for  Re(s) > -02 only if s belongs  to  either  the 
branch  cut of vol(s) or  v02(s). 
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SOLUTION OF THE ASSOCIATED EIGENVALUE PROBLEM FOR s E S2i 

In this  appendix,  the  solutions of equations (63) and (64)  with I,, 0 for s on 
the  branch  cuts of vOm(s) a r e  examined. It is convenient to  use  coefficients  related 
to  the  original  expansion  coefficients Kmk(v) and Zm* (the  bar  indicates  that  one is 
considering  the  associated  eigenvalue  problem).  Recall  that  the Ern,* are  related  to 
such  coefficients by equations (50), (E4),  and  (E5). It was  also  noted  in  appendix F that 
the  coefficients  can be determined only to  within  an  arbitrary  factor  independent of v. 
By following  references 12 and 13,  one introduces  coefficients B,, as 

- 

The  estimate  BmZ(a,P) (eq. (F22)) was not  bounded  on the  branch  cuts of vom(s). In 
that  estimate  the Xo(-z,s) function was used so that  the  behavior  for s inside, on, and 
outside  the  curve C2 could  be  seen.  To  investigate  what  happens on the  branch  cuts of 
vom(s), one  should  use  the X,(z,s) functions  (appendix A) which do not  contain  the 
branch  cuts of vom. Also, when vol(s) becomes  pure  imaginary  (that is, on its branch 
cut),  one  cannot  include  the  contribution  (the  pole at z' = v01) in  the  integral  over  the 
contour C' of equation (64). Recall  that  the  material  properties  cm  and om deter- 
mine  where on the  real  s-axis the  branch  cuts of vorn(s) lie.  The  only  restriction 
which has  been  made is that  c1 < 1 and  this  restriction  alone  does not  specify  the  over- 
lapping of the  cuts. It does,  however,  guarantee  that  the  branch  cut of vol(s) l ies 
entirely  to  the  left of s = 0. 

Consider s E Szi fl Sli  first.  When the  relationships  (Gl), (50), (E4),  and (E5) 
are  used  in  equations (F3) and (F4), one  obtains  after  some  algebra  and  use of the 
X-identities of appendix A, equations for Bz*(p)  and  the  additional  constraint,  namely, 
equations (77) and  (81).  Recall  that  equations (F3) and (F4) were  obtained from equa- 
tions (63) with 12* = 0. Equations  for  Bl*(-p)  and 61, a r e  obtained  in a similar 
manner  from  equation (64) with Ilk = 0 when the  contour C' is collapsed on to the 
interval (0,l) of the  branch  cut of S$(Z',S). These  equations  are  given as equa- 
tions (78) and (79). The  normal-mode  expansion of the  solution of the  associated  eigen- 
value  problem is given  in t e rms  of the Em* coefficients by equation (76).  Note that 
equation (81) is the  exact  eigenvalue  condition  since all material  properties  have  been 
assumed  to  be known. It determiiles  the  values of s, {sn}, for which the  eigenvalue 

- 

- 
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problem  has  nontrivial  solutions. When s belongs  to  the  branch  cut of vel, equa- 
tion (81) takes on different  values  above  and  below  the v01 cut.  Therefore, it is con- 
cluded  that  the  eigenvalue  problem  has  only  the  trivial  solution on the  branch  cut of vel. 
On that  part of the  branch  cut of "02 which is not also a part  of the v01 cut,  equa- 
tions (77) to (81) require  that  the  limiting  values of the  coefficients  above  and below the 
vO2 cut  be  related as 

F1*]+ = fpl*]- 
7 

that is, where s is real  and is given by max[-u2, -ul(l - cl)] < s < -u2(1 - c2). It then 
follows  from  equations (76) and (G2) that  the  limiting  values of q*(x,p,s) for the same 
region  are given by equation (96). From  the  results of references 12  and 13 for the  bare 
slab, it is expected that the  eigenvalue  problem  has  nontrivial  solutions  only at isolated 
points Pn> which lie on the  branch  cut of "02 but  not  on the  branch  cut of v01. 

In  the  limit  c2u2a - co which was  discussed  in  appendix F, 
tion (77) gives  B2*(p) - 0 whereas  equation (81), the  eigenvalue 

one sees  that  equa- 
condition,  becomes 

(c202a - 03 and Re(v02) = Im(v01) = 0) (G3) 

Equation (G3) is the  "thick-slab"  eigenvalue  condition and for  the  region of the  s-plane 
where it is valid, it can  be  seen  that  one  obtains  an  even  eigenvalue sn if 

and  an odd  eigenvalue sn if 

= o  

= o  ( ~ 2 0 2 ~ ~  - m) (G4b) 
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APPENDIX G - Concluded 

Note that  equation (G3) has  the  same  form as the  zero-order  approximation of the  critical 
condition  given  in  reference 2, except  that  here  one  has both even  and  odd  parity  solu- 
tions.  Numerical  solutions of the  eigenvalue  conditions are  discussed  in  appendix J. 

In the  region of the  s-plane, s E Sle n Szi,  one is specifically  interested  in  the 
solution on the  branch  cut of v02(s)  which lies  to  the  left of s = -01, that is, for s 
real  and -02 < s 6 -01. For  such  values of s, the  solution (76) outside  the  slab is not 
bounded as x - 03, since 

(0 6 v 6 1) (G5) 

In  addition,  the  restriction  Re(s) > -omin on  both  inhomogeneous t e rms  Im* (see 
eqs. (65) and (66)) also indicates  that  one  cannot  deform  the  inversion  contour  to  the  left 
of Re(s) = -01 in  general.  However, when one is looking for  the  solution  inside  the 
slab, I x1 6 a, perhaps  the  inversion  contour  can  be  deformed  to  the  left of Re(s) = -01 
for  special  values of material  properties  and/or initial data. For s E S2i n Sle,  expan- 
sion  coefficients for the  solution  inside  the  slab  are  obtained as equations (82) and (83). 
Note that  equation (83) is exactly  equation (81) with Xol(z,s)  replacing (v01 - z)Xl(z,s). 
Recall  from  equation (AlO) that   these  are  the X-functions  which a r e  continuous as s - C1. 
Under the  same  replacement of Xo1(z,s)  with (v01 - z X1 2,s , equation (82) reduces 
to  the  equation  from which  equation (77) was  obtained.  Equation  (83), which corresponds 
to  the  eigenvalue  condition  equation (81), determines  the  pseudo-eigenvalues,  that is, the 
values of s, -02 < s < -01, where  ~2k(x,,u,s)  has  nontrivial  solutions. 

> ( )  
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APPENDIX H 

FORM OF +*(x,,u,s) ON THE BRANCH CUTS OF VO,(S) 

In this appendix,  the  transformed  solution +*(x,p,s) is put  in a form  where  one 
can  see how it behaves  on  the  branch  cuts of vom(s). One expects  that +* contain  the 
branch  cut of vol(s) since  only  one of the  two  discrete  modes  appears  for I X I  > a. 
Such branch  cuts  appeared  in  the  half-space  problems  solved  in  references 14 to 16. One 
also expects  that  the  branch  cut of V O ~ ( S )  does not appear  in +* but instead  one  should 
find  poles at s = Sn, the  places  where  the  associated  eigenvalue  problem  has  nontrivial 
solutions.  This  condition  was  found  for  the  bare-slab  problem  analyzed  in  references 6, 
7, 12, and 13. 

It is not obvious  from  the  equations  which  determine  the  expansion  coefficients 
implicitly how one  should  group  the t e rms   t o  show  what is expected.  Consider first 
+2*(x,pys).  From  equations (32) and (44), 

Note that  this  equation  can  be  obtained  from  equations (70) and  (72). It is readily shown 
from  the  definition of the Fm, functions  (eqs. (46)) and  the  properties of the Cm* 
(eqs.  (B11))  that 

It follows  from  equations (H2) that  the  two  coefficients  in  equation  (Hl)  can  be  written as 
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where  equation (B12) has  been  used  to  replace F2*(a,-vO2,s). Equation  (Hl)  then 
becomes 

When s E Branch  cut of v02(s), then "02 = ilvo21 for  Im(s) = 0- and vO2 = -i v02 
for  Im(s) = 0'. Therefore,  on  going  from  below  to  above  the  branch  cut of  v02, it is 
evident  that  the  third  and  fourth  terms  in  the  right-hand  side of equation (H4) simply 
interchange  whereas  those  containing F2*(x,v,s) and F2*(-x, v,s) a r e  unaffected 

I I  

since  these  functions do  not  depend  on vO2. The  coefficient of [az, + - 1 F2~(aJvo2 , s~  
2 

however  changes  sign  for  odd-parity  solutions  and  the  behavior of A2*(v) is not clear 
yet. By comparing  equation (H4) with  equation (76) for 1x1 < a, one  suspects  that 

(a,v02,sg is the  coefficient  which  excites  the  associated  eigensolution 
- 
@*(x,p,s).  This is the  information  needed  to  group  terms  in  the  implicit  equations  for 
the  expansion  coefficients. 

Now examine  the  equations  which  determine  the  expansion  coefficients.  From 
equation (52) upon using  the  X-identities,  the  definition of the  hm  functions  (eqs. (80)), 
and  the  relationship  between  the Em, and  the  original  expansion  coefficients,  the  fol- 
lowing  equation is obtained: 
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APPENDIX H - Continued 

By following  the  same  procedure  with  equation  (51),  one  can  obtain after making use of 
equation (H5) : 

From  equation (54), there is obtained: 

%(-”01) a1* = b 2 *  + ~ F 2 * ( a y ” 0 2 y ~ ~ ~ 2 ( ” 0 2 )  1 * h2(-”022j 

+ -F2*(a,”024  E2k02)f h2(-”02)1 
1 
2 

+ Fl*(-aJ”OlJS) k1(-”01) * hl(”O11 (H 7) 
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APPENDIX H - Continued 

Finally,  from  equation (53), 

s,' 
r 

By following a procedure  similar  to  that of reference  13,  the  expansion  coefficients 
A,*(p) and al* can  be  written  in  the  form: 

J 
When  equations (H9) are used  in  equations (H6) to  (H8), it follows  that 

and are the  expansion  coefficients of the  associated  eigenvalue 
problem  given by equations (77) to (79). The  coefficients Bm*(y) and  bl* are found 
to  be  given by equations (85) to (87).  The  coefficient a2* is obtained  from  equation (H5) 
AS 
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APPENDIX H - Concluded 

It  can  be  seen  from  equation (81) that  the  coefficient of [a2* + ZF2~a,vo2,s] l in  equa- 

tion (H11) is the  eigenvalue  condition,  and it will be  zero at the  places  where  the  associ- 
ated  eigenvalue  problem  has  nontrivial  solutions.  Equation (H11) is the  same as equa- 
tion (88). The  solutions +m*(x,p,s) can now be  written as equations (91) and (92). 
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APPENDIX I 

BEHAVIOR OF **(x,p,s) ON INVERSION  CONTOURS 

In  this  appendix,  several  points  concerning  the  behavior of +&(x,p,s) on the  inte- 
gration  contour of the  inverse  Laplace  transformation  and  some  parts of related  deformed 
contours are discussed. First, one  looks at the  behavior of I)*(x,p,s) as I s I - 03 with 
Re(s) = y, a large  finite  positive  number. It will  be  seen  that +,(x,p,s) is not neces- 
sar i ly  O ( . .  Such pa r t s  of +*(x,p,s) are inverted  separately  and  the  resulting  solutions 
are shown  to  satisfy  the  uncollided  transport  equation.  Then  one  considers how +*(x,p,s) 
minus  the  uncollided  term  +u~(x,,u,s)  can  be  deformed  around  the  poles  and  the  branch 
cut of +*. 

It is of interest  to  examine  the  behavior of +, on  the  contour  Re(s) = y as 
I S I  - 03, where y is finite (see  fig. 4). For  such cases, s E Sle  n Sze  and  the solu- 
tions +,* can  be  seen  from  equations (32), (39), (44), and (45) to  be 

and,  for x > a, 

with  an  equation  similar  to  equation (12) for x < -a. One sees then  that  the  coeffi- 
cients  Al*(-v), A2*(v), and  the Fm* functions a r e  needed.  The  expansion  coeffi- 
cients  are  given  implicitly  in  terms of the F,, as 
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APPENDIX I - Continued 

and 

where  the  Imk(pys) are given by 

and 

93 



APPENDIX I - Continued 

The  behavior of various  functions which appear  in  equations (11) to (16) as IS\ - 00, 
Re(s) = y is 

and  for 0 S P,V 2 1, 

On using  equations (17) and (18) in  equations (15) and (I6), one  finds  that 

- 06) 

and 

- O(i) 
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APPENDIX I - Continued 

The  coefficient A2*(p) is obtained  from  the  integral  equation (13). Since  the  kernel of 
this  equation is also 0 , the first t e r m  of the  Neumann series solution  will give the 
behavior of A2*(p) Is1 - w. It follows  then  from  equations (13) and (19) that 

Using  equations (110) and (Ill) in  equation (14) yields 

- 06) 

Equations (Ill) to (112) are used  in  equations (11) and (12) to  get 

and 

when x > a. For x < -a, has a similar  form. Upon using  equation (18) for  the 
Fm* functions,  one  finds  that  equations (113) and (114) can  be  written as equations (98) to 
(101) where  the'symmetry  properties of fm*(x,p) have  been  used. It can  be  seen  from 
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APPENDIX I - Continued 

equations (98) to  (101) that  +mrt(x,p,s) is not necessarily 0 . In  fact, if fm*(xo,p) 

contains 6(x  - XO), then  +*(x,p,s) is 0(1) as Is1 - 03, Re(s) = y. The  parts of 
+*(x,p,s) which a r e  not O@) can  be  inverted by inspection  after a change of variables 
is made. 

For X > a, p > 0, and -2 all s + u f ( ~ , p , ~ )  is defined as 

which  gives  the  parts of equation (100) which are not 0 for Is1 - co, Re(s) = y. Now 
the  change of variables 

x - x0 = pt 

where t 2 0 since x 2 x. and p > 0 is made.  Equation (115) then  becomes 

which is easily  seen  to  be  equation (103) with  GU*(x,p,t)  given  by  equation  (106). For 
P <o, 

is used. It is seen  then  that  the  results  given as equations (103) to  (107)  follow. 
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APPENDIX I - Continued 

Another  point  to  be  discussed  in  this  appendix is the  contribution  to  equation (114) 
from  the  contour Cp (see fig.  4) around  the  right-hand  end of the  branch  cut of vol(s) 
as the  radius p goes  to  zero.  This  branch  point is located at s = -al(l - c1); thus, 

Here vol(s) - 00 as p - 0 as 

The  branch  cut  has  already  been  picked so  that vol(s) is real when s is real and 
greater  than  -ul(l - c1). The  integral 

with s given by equation  (I19), is zero  in  the  limit p - 0 if 

independent of q. As  pointed  out  in  the text, the  point s = -q(l - c1)  may  happen  to 
satisfy  the  eigenvalue  condition  (eq. (81)). One assumes  for  the  moment  that it does not 
and  shows later what  changes 
p - 0  as 

so  that 

are required if it does.  The  function 521(-=,s) - 0 as 



APPENDIX I - Continued 

At this  branch  point s E Sl i  n S2i so one  needs  to  show  the  behavior of many  functions 
given  in  the  text as p - 0. This  behavior  can be given  in t e rms  of the  behavior of vo l  
and S21(w,s). In the  relationships which  follow,  quantities  which a r e  functions of s will 
be  given as O(Vol),  O(l/v01), O(S21), 0(1),  etc., as s - -ol(l - cl).  For  example, 

S221(m,s) v o f  - Finite - 0(1) (2 7) 

where  the  given  equation  number is that  from which the  relationship  can  be  seen. 

k - 0(1) 

(77) 

(79) 
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APPENDIX I - Continued 
- 
B1*(-P) - O(1) 
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From  these last two  relationships  and  equation  (I24),  it  follows  that 

so that  equation (122) is satisfied.  Therefore,  there is no contribution  from  the  inte- 
gral (121) for  the  case when s = -ol(l - c1) does  not  satisfy  the  eigenvalue  condition (81). 

If the  point s = -ol(l - c1) happens  to  satisfy  the  eigenvalue  condition,  the  denomi- 

nator of Fzj:  + F2*(a,u~2ys]  which is equivalent  to  the  eigenvalue  condition (81) van- 

ishes.  It  can  be  seen  from  equation (88) that  the  limiting  form of this  condition at the 
branch  point is a1* = 0 and  additional  discussion  about  this  condition is given  in 
appendixes J and K. If one  considers,  for  such cases, the  function 

instead of +*(x,~,s)  as the  integrand of the  integral (I21), it follows  that  in  the  limit 
p - 0, the  contribution  from  such  an  integral  vanishes.  The  part  which  has  been  sub- 
tracted  from +*(x,p,s)  in  function (126) is considered  separately  and  would  appear  to 

have a pole  because of the  zero  in  the  denominator of b 2 *  + ~F24a,v02,s] .  Its contri- 

bution  therefore  does not vanish  in  the  limit p - 0; in  fact, its contribution  looks  like a 
discrete  residue  term.  However,  the  point is not isolated  remember  that  this is the 
branch  point of v01 at s = -q(l - cl)) so  it should  be  understood  that its contribution 
is included  in  the  branch-cut  integral  term of equation (124). The  numerical  results 
indicate  that  such  points  occur. 
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APPENDIX J 

EQUATIONS AND PROCEDURES FOR COMPUTATION OF EIGENVALUES 

The  equations  from  which  the  time  eigenvalues en}   a re   de te rmined  for 
s E S l i  n Szi are equations (77) and (81). When s E S l e  n Sai,  the  corresponding  equa- 
tions  are  equations (82) and (83) and  they  determine what has  been  called  the  pseudo- 
eigenvalues.  These  equations are solved  numerically by using  the  procedure of refer- 
ences 12 and  13.  As  stated  previously,  these  equations  can  be  written  in  terms of the 
nondimensional  quantities  introduced  in  equations (118). By making  the  substitution 

it follows  that  equation (77) can  be  written for 1 real and  max(-uD+ oR, 0) < ( < 1 
(that is, on that  part of the  branch  cut of v02 which is not also  part  of the  branch  cut 

where 

c j u f  

Now one  defines A as e* 

which is the  eigenvalue  condition (eq.  (81)) if  A = 0. e* 
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APPENDIX J - Continued 

Equations (J2) are  reduced  to two sets (*) of N equations  in  the N unknowns 
B+( pi) and  B-(pi)  where i = 1,. . .,N (see, for  example,  ref. 28) given by 

where R- are the  weighting  functions  for  the  numerical  integration  scheme  which is 
used.  Equation (54) is written as 

J 

N 
A c* = - 2 g , ~ z   R B  j *( p j) 

j =1 

Since a search  must  be  made  for  values of < for  which A<- = 0, one  must  be  able to 
compute all quantities  which  appear  in  equations (53) for  any  value of < in  the  range 
given  by  equation (120)). These  quantities  are  computed as follows: 

The  functions "om are 'determined by 51,(vom,<) = 0 and  they are computed  numeri- 
cally by using  the  Newton-Raphson  iteration  (ref. 28) on the nonlinear  equations 

and 

The  X-functions are computed  from  equation (A8a); namely, 
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APPENDIX J - Continued 

For and z real  where z = - p ,  0 2 p 2 1, one  has fr ‘om eq 

where 

I 

pation (Jll) that 

For < real  and z = Vo2, one  calculates  the  real and imaginary  parts of 

where 
\ 
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APPENDIX J - Continued 

Integrals  in  equations (512) and  (J15) are computed as 

where  Ri are again  the  weighting  functions  for  the  numerical  integration  scheme. 

In all numerical  integrations,  Gauss’  method  (ref. 28) was  used.  For  integrations 
in  equations (55) and  (J6),  the  interval  (0,l)  was  split  into  four  intervals 

(0,l) = (0,0.05) + (0.05,O.l) + (0.1,O.g) + (0.9, 1.0)  (J17) 

and a 10-point  Gaussian  formula  was  used  in  each  subinterval,  For  integrations i n  
equations (512) and  (J15),  the  interval  (0,l)  was  divided as 

(0,l) = (0,O.l) + (0.1,0.9) + (0.9,0.99) + (0.99,0.999) + (0.999,l.O) (J 18) 

and  in  each of these  subintervals a 10-point  Gaussian  formula  was  also  used.  The  sub- 
division (518) is the  same as that  used by Kowalska (ref. 29) and  the  X-functions  calcu- 
lated here  agree with  those  she  gives  to all figures which she  quotes  except  for  the real 
and  imaginary  parts of Xm(v02,<).  She apparently  used r 2  instead of r2/7r in  equa- 
tions  (J14)  to  obtain  the  numerical  values  for  the  real  and  imaginary  parts  given  in  part II 
of reference 29. Since  her later published  critical-slab  results (ref. 24) agree with those 
of Mitsis (ref. 22) for a bare  slab,  it is expected  that  this  oversight  was  corrected. 

Conditions (82) and (83) which  determine  the  pseudo-eigenvalues  for s E Sle n S2i 
lead  to  very  similar  equations which  will  not  be  written down. In this  region,  the real 
s-axis corresponds  to 0 5 < 2 -OD and  such  equations  need  be  considered  only i f  
-OD > 0. 

The  procedure  used  to  calculate  the  eigenvalues cn is as follows.  For  fixed 
values of A, OR, and OD, one  selects a number of < values  in  the  interval  given by 
equation (120). For  each of these  values,  one  obtains  1~021  and v01 from  equa- 
tions  (J9)  and (J10) by iteration  (Newton-Raphson).  Equations  (J13) are  evaluated  at  each 

of the 50 Gaussian  integration  points vi (0 < vi < 1). Next, the x2(-pJ79 are 
xl(-pj>c) 
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APPENDIX J - Continued 

calculated  for  each of the 40 Gaussian  integration  points, pj (0 < pj < 1) by using 

equation (516) in  equation  (J19).  The real  and  imaginary  parts of x2(v02,5) 

Xl(VO2,9 
a r e  com- 

puted  in  the  same way from  equations (J14) to (516). Now g p j )  can’be  computed  from 
equation (53) at  each of the 40 points pj and  all  the  coefficients  in  the two se t s  (*) of 
N equations  in  the N unknowns B+(pj) and B-fj) (eqs.  (55))  can  be  evaluated. 
These two sets of simultaneous  equations  are  solve  numerically  for B *( p j )  which a r e  
then  used  to  compute A from  equation  (J6) at the  selected  values of e.  In this way, 
one  locates  the  zeros of A approximately. A new set of values,  located  about 
each  approximate en, is selected  and  the  process is repeated.  For  the  present  compu- 
tations,  the en were  located  to  three  figures.  Discussion of the  computed  results is 
given  in  the  text.  The  calculations  were done on a Control  Data 6600 computer  system 
at the  Langley  Research  Center. 

( 

e* 
e* 

In  appendix G, the  thick-slab  eigenvalue  condition was given as equation (G4).  Note 
that g, quantities  given by equations (53) a re ,  within a factor,  exactly  the  quantities 
needed  in  equation (G4). Therefore,  the  thick-slab  approximation  eigenvalues  are 
obtained  from 

g* = 0 

as would be  expected  from  equation  (J4). 

The  bare-slab  eigenvalues  are  obtained  when OR = 0 and it is easily shown that 
in  this  case,  equations (55) and  (J6) no longer  depend on UD; that is, for OR = 0, these 
equations do not contain OD. 

It was noted  in  the  text  and  in  appendix I that  the  branch  point of v01 located at 
s = -01 (1 - c1) may  happen  to  satisfy  the  eigenvalue  condition  which  can  be  seen  from 
equation (88) to be 

CYl* = 0 

when V O ~  - m. This  point  corresponds  to = -oD +- OR and it can  be shown that  equa- 
tion (520) then  determines  values of 5 = en which  depend on neither OD nor oR; that 
is, if  one uses  c = -uD + OR to  eliminate OD from  the  condition  (J20), uR drops 
out of the  equations.  Equation (520) determines  the  values of 5 at which  eigenvalues 
disappear  into  the  right  end of the  branch  cut of V O ~ .  Also note that the  limiting  form of 
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APPENDIX J - Concluded 

the  pseudo-eigenvalue  condition  for s = -01, which corresponds  to ( = -OD, determines 
the  values of ( where  the  pseudo-eigenvalues  disappear  into  the  left  end of the  branch 
cut of vel. Such points, as well as those  given by equation (J20), a r e  labeled with an 
asterisk  in  figures 7 and 9 to 11. 
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APPENDIX K 

REMARKS ON EIGENVALUE-BRANCH-POINT COINCIDENCE 

In this  appendix, a few remarks  concerning  the  situation when the  eigenvalues  (or 
pseudo-eigenvalues)  disappear  into  the  branch  cut of vol  are made. This  situation is 
somewhat  analogous to  that  encountered by Hintz  (ref. 9) for  the  slab  surrounded by pure 
absorbers. He could  not say  whether a bare-slab  eigenvalue  (which  does  not  depend on 
uD) that  happened  to  coincide  with -OD belonged  to  the  point  spectrum or  the  continuous 
spectrum  for  his  problem.  In  the  present  problem,  the  eigenvalues  coincide  with a 
branch  point as they  disappear  into  the  branch  cut of vel. A  numerical  study of the 
branch-cut  integral  in  equation (124) has not  been  made  nor  has  the  eigenvalue  condition 
on another  Riemann  sheet  been  investigated. It is suspected  that  there is no drastic 
change  in  the  shape of the  solution  given by equation (124)  when an  eigenvalue  disappears 
into  the  branch  cut of v01 and  such  studies would resolve  this point. It was  pointed  out 
in  appendix J that the  condition  (J20),  which  determines  whether  the  point s = -q(l - cl), 

(t~' = -UD + UR) is a zero  of the  denominator of a2* + Z F 2 + ( a , v ~ 2 , s ~  given by equa- 

tion (88), depends  neither on OD nor oR explicitly. In appendix I, it was  indicated 
that  the  contribution  from  such  points  should  be  included  in  the  branch-cut  integral  since 
it  arises  from  the  integration  around  the  branch  point. One understands  then  that  such a 
contribution is included  in  equation (124) if s = -ul(l  - c1) happens  to satisfy equa- 
tion  (520). How such  zeros of equation  (J20)  behave or appear  in  the  solution  after 
passing  through  the  branch  point as the  material   properties  are  varied  has not been 
studied  here. 

[ 1 

If one considered  the  problem of a finite slab with symmetric  reflectors of finite 
thickness,  then  what is happening at the  places  where  the  eigenvalues  coincide  with 
v01 = 03 might  be  deduced. In such a problem,  the  solution  probably  does not  contain 
the  branch  cut of vel, but instead  has  discrete  eigenvalues  along it. Even  though there  
is another  parameter  in  the  problem,  the  reflector  thickness,  one  might  be able to   carry 
out a numerical  study of all the  eigenvalues. 
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